UDK УДК 621.3 Doi: 10.31772/2587-6066-2018-19-4-716-727
ENERGY RECUPERATION OF POSITIVELY CHARGED IONS
I. V. Trifanov, O. A. Sukhanova, M. G. Melkozerov, E. A. Zhirnova, V. I. Trifanov
Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation
It is important to recuperate the energy of beams of positively charged ions with simultaneous neutralization of their charge, for example, behind the nozzle of an electric rocket engine, into electric power. One of the methods to solve this problem is development and application of energy recuperators of positively charged plasma flow ions, which can be installed near the cutoff of the ERD nozzle. The process of energy recuperation of positively charged ions with simultaneous neutralization of their charge consists in electrostatic inhibition of the concentrated beam of charged particles and their interaction with the energy recuperator multicollector electrodes, which in turn are the charging electrodes of the supercapacitor. It accumulates electrostatic electricity on the electrodes of the supercapacitor, which can be used to power the systems of the spacecraft (SC). When positively charged ions interact with multi-collector electrodes, their charge is also neutralized by the action of the electron current coming from the double layer of the charging electrode of the supercapacitor. To improve the efficiency of energy recovery of positively charged ions, the volume charge of charged particles is exposed to a low-frequency electric field by an isolated control electrode installed in the cavity of a multi-collector electrode towards the moving ion flow. Development of energy recuperators of positively charged ions and increase of energy efficiency of ERD requires a scientific research based on the construction of models, principles of construction and evaluation of methods of manufacturing of their individual components.
Keywords: positively charged ions, energy efficiency, multi-collector electrode, double electric layer, energy recuperator, control electrode, solid electrolyte.
References

1. Grishin S. D., Leskov L. V., Kozlov N. P. Elektricheskie raketnye dvigateli [Electric rocket engines].

Moscow, Energiya Publ., 1975, 272 p.

2. Trifanov I. V., Kaz’min B. N., Oborina L. I., Trifanov V. I., Savel’eva M. V. [Improving the efficiency of multifunctional electric rocket engines]. Vestnik SibGAU. 2016, Vol. 17, No. 3, P. 729–737 (In Russ.).

3. Trifanov I. V., Kaz’min B. N., Trifanov V. I., Oborina L. I. Rekuperator energii polozhitel’no zaryazhennykh ionov [The heat exchanger energy positive ions]. Patent RF, no 2617689, 2017.

4. Voronina E. N. Vozdeystvie bystrykh atomov na nanostruktury i polimernye kompozity. Kand. Diss. [Effects of fast atoms on nanostructures and polymer composites. Cand. Diss.]. Moscow, 2012.

5. Kurnaev V. A., Protasov Yu. S., Tsvetkov I. V. Vvedenie v puchkovuyu elektroniku [Introduction to beam electronics]. Moscow, MEPhI Publ., 2008, 452 p.

6. Eletskiy A. V. [Mechanical properties of carbon nanostructures and materials based on them]. Uspekhi fizicheskikh nauk. 2007, Vol. 177, No. 3, P. 233–275 (In Russ.).

7. Bocharov G. S. Emissionnye svoystva katodov na osnove uglerodnykh nanotrubok. Kand. Diss. [Emission properties of cathodes based on carbon nanotubes. Cand. Diss.]. Moscow, 2007.

8. Martynov M. I., Chekalin G. G. Rekuperator ionnogo toka [Ion current recuperator]. Patent RF, no. 1741595, 1995.

9. Dimitrov S. K., Obukhov V. A. Sistemy tormozheniya i rekuperatsii energii plazmennykh potokov (Ionnye inzhektory i plazmennye uskoriteli) [Braking systems and recovery of plasma flows of energy (Ionic injectors and plasma accelerators)]. Moscow, Energoatomizdat Publ., 1989, P. 193–219.

10. Trifanov I. V., Ryzhov D. R., Kaz’min B. N., Oborina L. I. [Energy recovery kvaziunipolyarnyh beams of electrons and ions in the ERE energy]. Reshetnevskie chteniya. Krasnoyarsk, 2015, P. 98–99 (In Russ.).

11. Conway В. Е. Electrochemical Supercapacitors: Scientific Fundamentals Technological Applications. Kuwer-Plenum Publ. Co., New York, 1999.

12. Pankrashkin A. [Supercaps Panasonic: physics, principle of operation, parameters]. Ionistory Panasonic: fizika, printsip raboty, parametry. Komponenty i tekhnologii. 2006, No. 9. Available at: http://ecworld.ru/.

13. Kuznetsov V., Pan’kin O. [Capacitors with a double electric layer (supercapacitor): the development and production]. Komponenty i tekhnologii. 2005, No. 6, 12 p. (In Russ.).

14. Galushko A. I., Grom Yu.I., Lazarev A. N., Salikhov R. S. [Study of ionistor properties and efficiency of their application in spacecraft power supply systems]. Voprosy elektromekhaniki. 2013, Vol. 133, P. 15–18 (In Russ.).

15. Kuznetsov V. P. [Capacitors with a double electric layer (supercapacitor): the development and production]. Elektricheskoe pitanie. 2006, No. 2, 8 p. (In Russ.).

16. B. E. Conway (University of Ottawa, Canada). Pseudocapacitanse; its Nature and Relation to Double Layer Capacitance of Electrochemical Capacitors.

17. Kuznetsov V. P. [Ionistors-electrochemical solidstate elements]. Elektronnaya promyshlennost. 1975, No. 8, P. 42–44 (In Russ.).

18. Liu С., Yu Z., Neff D., Zhamu A., Jang B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters. 2010, Vol. 10, P. 53–4868.

19. Stoller M. D., Park S., Zhu Y., An J., Ruoff R. S. Graphene-based ultracapacitor. Nano letters. 2008, Vol. 8, No. 10, P. 3498–3502.

20. Kotz R., Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta. 2000, Vol. 45, No. 15–16, P. 2483–2498.

21. Pandolfo A. G., Hollenkamp A. F. Carbon properties and their role in supercapacitors. Journal of power sources. 2006, Vol. 157, No. 1, P. 11–17.

22. Yu G., Xie X., Pan L., Bao Zh., Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy. 2013, Vol. 2, P. 213–234.

23. Pisareva T. A. [Physical bases of energy storage and electrode materials of electrochemical capacitors]. Vestnik Udmurtskogo universiteta (Fizika i Khimiya). 2014, Vol. 3, P. 30–41.

24. Filimonova N. P. [Technology of automated control of electrical parameters of ionistors]. Atomnyy proekt. 2016, No. 23, P. 8–9.


Trifanov Ivan Vasil’evich – Dr. Sc., professor, Head of Department of Quality management and certification,

Reshetnev Siberian State University of Science and Technology. E-mail: sibgau-uks@mail.ru.

Sukhanova Olga Andreevna – Master’s degree student, Department of Quality management and certification,

Reshetnev Siberian State University of Science and Technology. E-mail: olkasukhanova@mail.ru.

Melkozerov Maksim Gennad’evich – Cand. Sc., Docent, Director of Institute of machine science and mechatronics,

Reshetnev Siberian State University of Science and Technology. E-mail: melkozerov_mg@sibsau.ru.

Zhirnova Ekaterina Aleksandrovna – Cand. Sc., Docent, Docent of Department of Quality management and certification,

Reshetnev Siberian State University of Science and Technology. E-mail: karakara85@yandex.ru.

Trifanov Vladimir Ivanovich – Master’s degree student, Department of Quality management and certification

department, Reshetnev Siberian State University of Science and Technology. E-mail: sibgau-uks@mail.ru.


  ENERGY RECUPERATION OF POSITIVELY CHARGED IONS