UDK УДК 629.78.064.56:629. Doi: 10.31772/2587-6066-2018-19-4-624-630
E. O. Vorontsova, M. V. Lukyanenko, P. A. Kryuchkov
Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation; JSC “Academician M. F. Reshetnev “Information Satellite Systems”, 52, Lenin Str., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation; National Research Tomsk Polytechnic University, 30, Lenin Av., Tomsk, 634050, Russian Federation
New types of primary power supply have been used for wide application in Electric Power Systems (EPS) of spacecrafts (S/C) recently. These are Solar arrays (SA) based on three-stage GaAs cells instead of Si cells. GaAs cells specific data is their low thickness and fragility. Due to that they have low resistance to mechanical stress and crack. Cracks in cells cause their power decrease and SA power decrease in whole. At the present time SA maintenance is carried out by the following methods: the visual method of cells wholeness inspection (to detect cells and protective glass wholeness), SA current-voltage characteristic measurement, and the electro- luminescence method. These methods do not allow detecting defects reliably and safely like hidden cracks in cells. It is necessary to define the method which will help to detect a defective cell without direct SA connection. It means a non-contact method. The content of the proposed method consists in cells illumination by lasing with wave length (0.40–0.55) μm (the green spectrum domain). It produces luminescence and the cell reflects light in the red spectrum domain. The experiment of automatic visual SA cells inspection has been performed on the test stand at JSC “ISS”. This stand has the moving platform which can be moved along SA as in vertical and also horizontal directions. On the platform there is a camera and laser producing light in the green spectrum domain. When the platform is set opposite the tested cell, laser is switched on and its beam is pointed at the cell. Luminescence appears in lasing and the cell surface reflects the light in the red spectrum domain. The camera registers the emission to measure the cell luminescence spectrum intensity by means of software (S/W). Then this value is compared by S/W with luminescence spectrum intensity value received and recorded in PC memory before the cell- etalon testing. This test stand based on the electro-luminescence method allows us to define cells defects presence without contact and hidden cracks; to decrease impact of human factor.
Keywords: Electric Power System, Solar Array, cell, method, luminescence.

1. Lukyanenko M. V., Lukyanenko M. M., Lovchikov A. N., Bazilevsky A. B. Istochniki energii elektrosnabzheniya kosmicheskikh apparatov [Sources of energy for power supply of spacecraft]. Krasnoyarsk, SibSAU Publ., 2008, 176 p.

2. Soustin B. P., Ivanchura V. I., Chernyshev A. I., Islyaev Sh. N. Sistemy elektropitaniya kosmicheskikh apparatov [Power supply systems for spacecraft]. Novosibirsk, Sibirskoye izdatel’stvo Publ., 1994, 318 p.

3. Rauschenbach G. Spravochnik po proyektirovaniyu solnechnykh batarey [Guide for the design of solar panels]. Transl. from English. Moscow, Energoatomizdat Publ., 1983, 360 p.

4. Zhuravleva T. N., Leonov S. N., Golovkov V. V., Aliseenko Yu.V. [Methods for monitoring the integrity of photovoltaic cells]. Nauka vchera, segodnya, zavtra. 2016, No. 4 (26), P. 148–156 (In Russ.).

5. Umansky Ya. S., Skakov Yu. A. et al. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, X-ray Diffraction and Electron Microscopy]. Moscow, Metallurgy Publ., 1982, 632 p.

6. Minin A. A., Matrunchik A. S. [Prospects of photovoltaic cells use in the world and in Russia]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Stroitel’stvoi arkhitektura. 2016, Vol. 7, No. 1, P. 74–81 (In Russ.).

7. Kryuchkov P. A., Stadukhin N. V. [The state and prospects of development of EPS platforms of a heavy class of production of JSC “ISS”]. IV nauchnotekhnicheskaya konferentsiya molodykh spetsialistov AO ISS [IV scientific and technical conference of young specialists of JSC ”ISS”]. Krasnoyarsk, 2017. P. 112–114.

8. Alferov Zh. I. [Trends and prospects of development of solar energy]. Fizika i tekhnika poluprovodnikov. 2004, Vol. 38, Iss. 8, P. 48–51 (In Russ.).

9. Domínguez C., Antón I., Sala G. Solar simulator for concentrator photovoltaic systems. Optics Express. 2008, Vol. 16, No. 19, P. 14894–14901.

10. Koltun M. M. Optika i metrologija solnechnykh elementov [Optics and metrology of solar cells]. Moscow, Energoatomizdat Publ., 1983, 365 p.

11. Latukhina N. V., Dereglazova T. S., Ivkov S. V. et al. [Photoelectric properties of structures with microand nano-porous silicon]. Izvestiya Samarskogo nauchnogo tsentra RAN. 2009, Vol. 11, No. 3 (29), P. 66–71 (In Russ.).

12. Baryshnikov A. A., Gorelov S. A., Mustafin N. Sh. [Analysis of solar cell technology] Regional’noye razvitiye: elektronnyy nauchno-prakticheskiy zhurnal. 2016, No. 3 (15) (In Russ.). Available at: https://regrazvitie.ru/analiztehnologii-solnechnyh-batarej/ (accessed: 17.06.2018).

13. Suhoruchkina T. Ju., Atrashenko O. S. [Problems of development of renewable energy sources in Russia]. Energo- i resursosberezhenie: promyshlennost’ I transport. 2016, No. 2 (14), P. 40–43 (In Russ.).

14. Solonenko O. P., Cherepanov A. N., Marusin V. V., Poluboyarov V. A. [Combined technologies of obtaining promising powder materials, coating and hardening of the surface layers with controlled nano- and microstructure]. Tyazheloe mashinostroenie. 2007, No. 10, P. 10–13 (In Russ.).

15. Judaev I. V. [Study of the light transmitting properties of cellular polycarbonate – covering material of year-round greenhouses] Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2016, No. 120, P. 239–252 (In Russ.).

Vorontsova Evgeniya Olegovna – product design engineer, JSC “Academician M. F. Reshetnev “Information

Satellite Systems”. E-mail: jenvoroncova@gmail.com.

Lukyanenko Mikhail Vasilyevich – Cand. Sc., professor, head of Department of Automatic control systems,

Reshetnev Siberian State University of Science and Technologies. E-mail: sibgau-sau@yandex.ru.

Kryuchkov Pavel Aleksandrovich – product design engineer, JSC “Academician M. F. Reshetnev “Information

Satellite Systems”. E-mail: kriuchkovpa@iss-reshetnev.ru.