UDK 534.86+004.942 Doi: 10.31772/2587-6066-2018-19-3-396-404
SIMULATION OF METAL LAYERS THICKNESS INFLUENCE ON PHASE VELOCITIES OF ACOUSTIC WAVES IN THE PIEZOELECTRIC PLATES
O. P. Zolotova*, S. I. Burkov
Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation; Siberian Federal University, 79, Svobodny Av., Krasnoyarsk, 660041, Russian Federation. * E-mail: zolotova@sibsau.ru
The research work presents the results of computer simulation of mass loading influence represented by two metal layers on variations in the dispersion modes of the Lamb and SH elastic waves phase velocity in the piezoelectric layered structures Me/ZnO/Me and Me/AlN/Me depending on the elastic wave frequency and the ratio of the metal layer thickness to the piezoelectric layer thickness. The studied materials of the piezoelectric layers have a set of such significant properties as large values of the electromechanical coupling coefficient for piezoelectrics and significant values of phase velocities for bulk waves and surface acoustic waves. Aluminum (Al) and molybdenum (Mo) are considered as metal layer materials, which are most often used in the manufacturing of acoustic electronic devices. For both types of structures it was revealed that only the Lamb elastic wave modes have localized maxima of S sensitivity. It was found that the value of changing in the elastic wave phase velocity depends on the ratio of the metal layer acoustic impedance and the piezoelectric plate material. The maximum sensitivity values of elastic wave modes are achieved with Al/AlN/Al configuration, i.e., in a system with low acoustic impedance values of the bulk longitudinal wave for the layer and piezoelectric plate materials. The results of the simulation can be used in the development of various acoustoelectronic devices, including some components of the rocket and space technology electronic base.
Keywords: piezoelectric plate, Lamb wave, SH-wave, mass loading, computer simulation.
References

1. Viktorov I. A. Rayleigh and Lamb Waves: Physical Theory and Applications. New York, Plenum Press, 1967, 154 p.

2. Anisimkin V. I., Kuznetsova I. E., Zajtsev B. D. [Acoustic plate modes: peculiarities of propagation and main characteristics]. Radiotehnika. 2015, No. 8, P. 17–24 (In Russ.).

3. Kuznetsova I. E., Zaitsev B. D., Borodina I. A., Teplylch A. A., Shurygin V. V., Joshi S. G. Investigation of acoustic waves of higher order propagating in plates of lithium niobate. Ultrasonics. 2004, Vol. 42, No. l–9, P. 179–182. DOI: 10.1016/j.ultras.2004.01.006.

4. Othmani Ch., Takali F., Njeh A. Theoretical study on the dispersion curves of Lamb waves in piezoelectricsemiconductor sandwich plates GaAs–FGPM–AlAs: Legendre polynomial series expansion. Superlattices and Microstructures. 2017, Vol. 106, P. 86–101. DOI: 10.1016/j.spmi.2017.03.036.

5. Anisimkin V. I., Voronova N. V., Zemlyanitsyn M. A., Pyataikin I. I., Shikhabudinov A. M. The structure of acoustic modes in piezoelectric plates with free and metallized surfaces. Journal of Communications Technology and Electronics. 2012, Vol. 57, No. 7, P. 738–742. DOI: 10.1134/S1064226912070017.

6. Zolotova O. P., Burkov S. I., Sorokin B. P. [Propagation of the Lamb and SH-waves in piezoelectric cubic crystal’s plate]. Zhurnal Sibirskogo federal’nogo universiteta. Seriya Matematika i fizika. 2010, Vol. 3, No. 2, P. 185–204 (In Russ.).

7. Di Pietrantonio F., Benetti M., Cannata D., Beccherelli R., Verona E. Guided Lamb wave electroacoustic devices on micromachined AlN/Al plates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2010, Vol. 57, No. 5, P. 1175–1182. DOI: 10.1109/TUFFC.2010.1530.

8. Anisimkin V. I., Voronova N. V., Kuznetsova I. E., Pyataikin I. I. Aspects of using acoustic plate modes of higher orders for acoustoelectronic sensors. Bulletin of the Russian Academy of Sciences: Physics. 2015, Vol. 79, No. 10, P. 1278–1282. DOI: 10.3103/S1062873815100032.

9. Zou J., Lin C. M., Lam C. S., Pisano A. Transducer design for AlN Lamb wave resonators. Journal of Applied Physics. 2017, Vol. 121, P. 154502 (10). DOI: 10.1063/1.4979914.

10. Yantchev V., Katardjiev I. Thin film Lamb wave resonators in frequency control and sensing applications: a review. Journal of Micromechanics and Microengineering. 2013, Vol. 23, P. 043001 (14). DOI: 10.1088/0960-1317/23/4/043001.

11. Nakamoto T., Moriizumi T. A theory of a quartz crystal microbalance based upon a Mason equivalent circuit. Japanese Journal of Applied Physics. Part 1. 1990, Vol. 29, P. 963–969. DOI: 10.1143/JJAP.29.963.

12. Sorokin B. P., Kvashnin G. M., Telichko A. V. et. al. Lamb waves dispersion curves for diamond based piezoelectric layered structure. Applied Physics Letters. 2016, Vol. 108, P. 113501 (5). DOI: 10.1063/1.4943945.

13. Mansfeld G. D., Alekseev S. G., Kotelyansky I. M. [Acoustic HBAR Spectroscopy of Metal (W, Ti, Mo, Al) Thin Films]. Proc. IEEE Ultrason. Symp. Atlanta, USA, 2001, P. 415–418. DOI: 10.1109/ULTSYM.2001.991652.

14. Farnell G. W. Acoustic Surface Waves: Topics in Applied Physics. Springer-Verlag, Berlin – Heidelberg – New York, 1978, 390 p.

15. Zolotova O. P., Burkov S. I., Sorokin B. P., Telichko A. V. [Elastic waves in piezoelectric layered structures]. Zhurnal Sibirskogo federal’nogo universiteta. Seriya Matematika i fizika. 2012, Vol. 5, No. 2, P. 164–186 (In Russ.).

16. Sorokin B. P., Kvashnin G. M., Telichko A. V., Burkov S. I., Blank V. D. Piezoelectric-layered structures based on synthetic diamond. Piezoelectric Materials. In Tech. 2016, P. 161–199. DOI: 10.5772/61563.

17. Zolotova O. P, Burkov S. I. [Metal layer thickness influence on the dispersion characteristics of SH-waves in the structures “Me/ZnO/Me/diamond” and “Me/AlN/Me/diamond”]. Siberian Journal of Science and Technology. 2017, Vol. 18, No. 3, P. 642–650 (In Russ.).

18. Kuznetsova I. E., Zaitsev B. D., Joshi S. G., Kuznetsova A. S. Gravimetric sensitivity of acoustic waves in thin piezoelectric plates in the presence of liquids. Technical Physics Letters. 2006, Vol. 32, No. 8, P. 729–731. DOI: 10.1134/S1063785006080268.

19. Burkov S. I., Zolotova O. P., Sorokin B. P., Turchin P. P., Talismanov V. S. Features of acoustic wave propagation in the Me/ZnO/Me/diamond waveguide structure. The Journal of the Acoustical Society of America. 2018, Vol. 143, No. 1, P. 16-22. DOI: 10.1121/1.5019475.

20. Zhang Z., Wen Z., Wang C. Investigation of surface acoustic waves propagating in ZnO–SiO2–Si multilayer structure. Ultrasonics. 2013, Vol. 53, No. 2, P. 363–368. DOI: 10.1016/j.ultras.2012.07.002.

21. Tsubouchi K., Sugai K., Mikoshiba N. [AlN material constants evaluation and SAW properties on AlN/Al2O3 and AlN/Si]. Proc. IEEE Ultrason. Symp. Chicago, USA, 1981, P. 375–380. DOI: 10.1109/ULTSYM.1981.197646.


Zolotova Olga Pavlovna – Cand. Sc., Docent, Department of Technical Physics, Reshetnev Siberian State University of Science and Technology. Е-mail: zolotova@sibsau.ru.

Burkov Sergey Ivanovich – Dr. Sc., Docent, professor, Institute of Engineering Physics and Radio Electronics, Siberian Federal University. Е-mail: sburkov@sfu-kras.ru.


  SIMULATION OF METAL LAYERS THICKNESS INFLUENCE ON PHASE VELOCITIES OF ACOUSTIC WAVES IN THE PIEZOELECTRIC PLATES