UDK 629.7:620.186 Doi: 10.31772/2587-6066-2018-19-2-346-354
ANALYSIS OF MICROSTRUCTURE OF LAMINATED POLYMER COMPOSITE MATERIAL OF METAL COMPOSITE OVERWRAPPED PRESSURE VESSEL
N. V. Eremin
Institute of Computational Technologies SB RAS; 53, Mira Av., Krasnoyarsk, 660049, Russian Federation; 2Institute of Computational Modeling SB RAS; 50/44, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
The microstructure of a layered polymeric composite material used in the construction of a metal composite over-wrapped pressure vessel is investigated. The purpose of this work was to evaluate the parameters characterizing the structure of a laminate polymer composite material. Due to their technological and structural features, laminated polymer composite materials have a number of operational disadvantages that lead to a reduction in the overall level of strength characteristics. From the different zones of the nine-layer composite shell of the metal composite overwrapped pressure vessel, four vertical flat samples of the composite material for the manufacture of thin sections were cut out. The method of electron-scanning microscopy was used. The analysis of the percentage confinement of fibers in the ma-trix was carried out. The structure of the layered polymeric composite material is uniform with the presence of a dis-persion of distances between the fibers. The analysis of porosity in a composite material was carried out. The analysis of the structure of composite materials with different porosity has shown that with increasing pore area and their num-ber, the strength characteristics of composite tapes and reinforcing fibers decrease. Using the “mixture rule” and “polydispersity model”, the values of the effective modulus of elasticity of the composite material are estimated. It is determined that the modulus of elasticity of the composite material in the zone of the flange of the composite shell is less than at the equator. A complex evaluation of the quality of a laminate polymer composite material used in the structure of a metal composite overwrapped pressure vessel was carried out. The obtained results of inhomogeneity of the me-chanical properties of the composite shell are necessary for design calculation of the stress-stain state of metal over-wrapped pressure vessels.
Keywords: microstructure, carbon fibers, pores, modulus of elasticity, composite material, metal composite vessel.
References

1. Vasilev V. V., Protasov V. D., Bolotin V. V. Kompozitsionnye materialy: Spravochnik [Composite Materials: Handbook]. Moscow, Mashinostroenie Publ., 1990, 512 p.

2. Gunyaev G. M. Struktura i svoistva polimernykh voloknistykh kompozitov [Structure and properties of polymeric fibrous composites]. Moscow, Khimiya Publ., 1981, 232 p.

3. Kerber M. L., Vinogradov V. M., Golovkin G. S. Polimernye kompozitsionnye materialy: struktura, svoistva, tekhnologiya [Polymer composite materials: structure, properties, technology]. Sankt Peterburg, Professiya Publ., 2008, 560 p.

4. Dushin M. I., Donetski K. I., Karavaev R. Y. [Identification of the reasons of porosity formation when manufacturing composites]. Trudy VIAM. 2016, No. 6, P. 8 (In Russ.).

5. ASTM D3171-15. Standard Test Methods for Constituent Content of Composite Materials, ASTM International, West Conshohocken, PA, 2015.

6. Gulyaev A. I., Iskhodzhanova I. V., Juravleva P. L. [Application of optical microscopy method for the quantitative analysis of polymer composite material structure]. Trudy VIAM. 2014, No. 7, P. 7 (In Russ.).

7. ASTM D2734-16. Standard Test Methods for Void Content of Reinforced Plastics. ASTM International, West Conshohocken, PA, 2016.

8. GOST 15139–69. Plastmassy. Metod opredeleniya plotnosti (ob’emnoi massy) [Plastics. Methods for the determination of density (mass density)]. Moscow, Standartinform Publ., 1969, 17 p.

9. Gul V. E. Struktura i prochnost polimerov [Structure and strength of polymers]. Moscow, Khimiya Publ., 1971, 334 p.

10. Litvinov V. B., Kobets L. P., Toksanbaev M. S., Deev I. S., Buchnev L. M. [Structural-mechanical properties of high-strength carbon fibers]. Kompozity i nanostruktury. 2011, No. 3, P. 36–50 (In Russ.).

11. Goldshtein R. V. Mekhanika razrusheniya. Razrushenie materialov [Mechanics of Destruction. Destruction of materials]. Moscow, Mir Publ., 1979, 240 p.

12. Composite material handbook. Vol. 1. Polymer matrix composites guidelines for characterization of structural materials. 2002. 586 p.

13. Eremin N. V., Moskvichev E. V. [Verification of the relationships for calculating the composite shell thickness of metal composite overwrapped pressure vessel]. Konstruktsii iz kompozitsionnykh materialov. 2017, No. 3, P. 3–7 (In Russ.).

14. Tarasova E. S. [Research of the mechanical properties of composite material, reinforced with carbon nanotubes]. Molodezhnyi nauchno-tekhnicheskii vestnik. 2014, No. 7, P. 14 (In Russ.).

15. Hashin Z., Rosen B. W. Composite Cylinder Asseblage (CCA). Journal of Applied Mechanics. 1964, Vol. 31, P. 223.

16. Brautman L., Krok R. Kompozitsionnye materialy. Tom 6: Granitsy razdela v polimernih kompozitah [Composite Materials. Vol. 6: The interfaces in polymer composites]. Moscow, Mir Publ., 1978, 294 p.

17. Moskvichev E. V., Eremin N. V. [Evaluation of the mechanical properties and thickness of the composite shell of a metal composite overwrapped pressure vessel]. Deformatsiya i razrushenie materialov. 2017, No. 12, P. 40–45 (In Russ.).


Eremin Nikita Viktorovich – junior researcher, Institute of Computational Technologies SB RAS. E-mail:

kaizoku813@gmail.com.


  ANALYSIS OF MICROSTRUCTURE OF LAMINATED POLYMER COMPOSITE MATERIAL OF METAL COMPOSITE OVERWRAPPED PRESSURE VESSEL