UDK 629.7.01 629.7.01 Doi: 10.31772/2587-6066-2018-19-2-293–302
MATHEMATICAL MODEL FOR GEOSTATIONARY SPACECRAFT DISTURBING TORQUES DETERMINATION
S. V. Latyntsev, A. V. Murygin
JSC “Academician M. F. Reshetnev “Information Satellite Systems”; 52, Lenin Str., 52, Zheleznogorsk, Krasnoyarsk region, 662972, Russia Federation; Reshetnev Siberian State University of Science and Technologies; 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation
Modern requirements to increase spacecraft active existence lead to the efficiency of all its resources use improve-ment. And one of the main spacecraft resources, which determines the period of active existence, is the orientation en-gines fuel. The fuel consumption of the orientation engines depends on the external disturbance torques affecting the spacecraft. The work is devoted to the development of a mathematical model that allows to determine external distur-bance torques continuously affecting the spacecraft. The mathematical model is based on the assumption that the ki-netic moment of the spacecraft remains unchanged in the inertial coordinate system. The use of an active flywheel ori-entation system makes it possible to measure a spacecraft kinetic and disturbance moments. A special feature of this measurement is the rigid connection of flywheels with the spacecraft body that rotates at an orbital speed. This feature makes it necessary to take into account the kinematic relationship of the flywheel kinetic moment with the kinetic and disturbance moments in the inertial space. Thus, according to the kinetic moment variation law, it was possible to ob-tain a mathematical model for the interrelation between the flywheel kinetic moment and external disturbance torques. To test the model, two of the most common methods of mean-square filter readings were examined: the Gaussian filter and the Kalman filter. Modeling systems of equations and coefficients of error matrices were determined for modeling. The model was tested in the GNU Octave mathematical computing environment using telemetry information received in 2017, from medium-sized spacecraft (based on the Express-1000H platform) and heavy (Express-2000) class. To com-pare the results, the graphs for calculating the kinetic moment from the model and the measured kinetic moment from the flywheels are given. The mean-square deviation of the compared values did not exceed 0.1 Nm for the Gaussian filter and 0.03 Nms for the Kalman filter. The graphs of disturbing torques estimation by a mathematical model are given. The mean-square deviation of the estimate of the disturbing torquess for the Gaussian filter did not exceed 0.9 % and for the Kalman filter it was 2 %. The convergence of the disturbing torques estimates shows the adequacy of the developed mathematical model.
Keywords: attitude determination and control system, spacecraft, disturbing torque.
References

1. Raushenbakh B. V., Tokar’ E. N. Upravlenie orientatsiey kosmicheskikh apparatov [Control of the orientation of spacecraft]. Moscow, Nauka Publ., 1974, 600 p.

2. Hughes P. C. Spacecraft attitude dynamics. New York: Dover publ. Inc., 2004, 570 p.

3. Sidi M. J. Spacecraft dynamics and control. Cambridge: Cambridge University Press, 2002, 409 p.

4. Wertz J. R. Spacecraft Attitude determination and control. London: Dordrecht/Boston, 1990, 863 p.

5. Moldabekov M. M., Akhmedov D. Sh., Elubaev S. A. et al. [Mathematical model of the process of angular motion of nanosatellite with inertial executive bodies] Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2016, Vol. 15, No. 1, P. 97–106 (In Russ.).

6. Kulik A. S., Luchenko O. A., Gavrilenko O. I. [Solution of problems of the pre-orientation orientation of a spacecraft]. Radioelektronika. Informatika. Upravlinnya. 2003, No. 2, P. 69–78 (In Russ.).

7. Protopopov A. P., Bogachev A. V., Vorob’eva E. A. [Correction of the orbit of the spacecraft on a highly elliptical orbit by low-thrust engines]. Trudy MAI. 2013, No. 68, P. 1–10 (In Russ.).

8. Wie B. Space vehicle dynamics and control. Reston : American Institute of Aeronautics and Astronautics Inc., 1998, 661 p.

9. Latyntsev S. V., Meus S. V., Ovchinnikov A. V., Babanov A. A. [Evaluation of the efficiency of the control algorithm for driving solar cells in a spacecraft with the aim of creating moments for unloading the electromechanical executive body of the ADCS]. Sovremennye problemy orientatsii i navigatsii kosmicheskikh apparatov. Sbornik trudov. 2014, No. 1, P. 348–352 (In Russ.).

10. Kovtun V. S., Kuz’michev A. Yu., Platonov V. N. Sposob formirovaniya razgruzochnogo momenta dlya sistemy silovykh giroskopov kosmicheskogo apparata s solnechnymi batareyami [Method of forming the unloading moment for the system of power gyroscopes of a spacecraft with solar batteries]. Patent RF, No. 2030338, 1992.

11. Bogachev A. V., Kovtun V. S., Platonov V. N. Sposob formirovaniya upravlyayushchikh momentov na kosmicheskiy apparat s silovymi giroskopami i povorotnymi solnechnymi batareyami i sistema dlya ego osushchestvleniya [A method of forming control moments for a spacecraft with power gyroscopes and rotary solar batteries and a system for its motion]. Patent RF, No. 2196710, 2001.

12. Bogachev A. V., Zemskov E. F., Kovtun V. S., Orlovskiy I. V., Platonov V. N., Sokolov A. V., Ulibishev Yu. P. Sposob formirovaniya upravlyayushchikh vozdeystviy na kosmicheskiy apparat s silovymi giroskopami i povorotnymi solnechnymi batareyami [A method of forming control actions on a spacecraft with power gyroscopes and rotary solar batteries]. Patent RF, No. 2207969, 2001.

13. Kargu L. I. Sistemy uglovoy stabilizatsii kosmicheskikh apparatov [Systems of angular stabilization of space vehicles]. Moscow, Mashinostroenie Pub., 1980, 173 p.

14. Khalimanovich V. I., Lavrov V. I., Kolesnikov A. P., Golovenkin E. N., Dostavalov A. V., Volovikov V. G., Akchurin G. V., Popugaev M. M. Sistema termoregulirovaniya kosmicheskogo apparata [The system of temperature control of the spacecraft]. Patent RF, No. 2564286, 2012.

15. Yelnikov R. V., Mashtakov Y. V., Ovchinnikov M. Y., Tkachev S. S. Orbital and angular motion construction for low thrust interplanetary flight. Cosmic research. 2016, Vol. 54, No. 6, P. 483–490. DOI: 10.1134/S0010952516060113.

16. Arias E. F., Charlot P., Feissel M., Lestrade J.-F. The Extra-galactic Reference System of the International Earth Rotation Service, ICRS. Astron. Astrophys. 1995, No. 303, P. 604–608.

17. Sevast’yanov N. N. [Increase of accuracy of modes of inertial control Forecast]. Vestn. Tom. gos. un-ta. Matematika i mekhanika. 2013, Vol. 26, No. 6, P. 88–95 (In Russ.).

18. Zakhvatkin M. V. Opredelenie i prognozirovanie parametrov dvizheniya kosmicheskogo apparata s uchetom vozmushcheniy, vyzvannykh rabotoy bortovykh sistem. Dis. k-ta tekhn. nauk. [Determination and prediction of the parameters of the motion of the spacecraft with allowance for perturbations caused by the operation of onboard systems. Cand. techn. sci. diss.]. Moscow, Keldysh Institute of Applied Mathematics Publ., 2013, 120 p.

19. Zav’yalova O. Yu., Kazantsev Yu. M. [Synthesis of the regulator of the flywheel electromechanical executive body]. Izvestiya TPU. 2012, No. 4, P. 162–166 (In Russ.).

20. Levskiy M. V. [Optimum control of the orientation of the spacecraft]. Priborostroenie. 2008, No. 5, P. 30–36 (In Russ.).

21. Manuylov Yu. S., Zinov’ev V. G., Zinov'ev S. V., Rakhimov R. R. [The problem of synthesis of the optimal regulator of stabilization of the angular position of the spacecraft of observation]. T-Comm. 2013, No. 6, P. 53–55 (In Russ.).

22. Ovchinnikov I. E., Lagun A. V. [Dynamics of the spacecraft control system with flywheel motors]. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki. 2009, Vol. 63, No. 5, P. 48–54 (In Russ.).

23. Ovchinnikov M. Yu., Tkachev S. S., Karpenko S. O. [Investigation of the angular motion of the microsatellite Chibis-M with a triaxial handwheel control]. Kosmicheskie issledovaniya. 2012, Vol. 50, No. 6, P. 462–471 (In Russ.).

24. Streyts V. V. Metod prostranstva sostoyaniy v teorii diskretnykh lineynykh sistem upravleniya [The space-state method in the theory of discrete linear control systems: trans. with English]. Moscow, Nauka Publ., 1985, 296 p.

25. Boguslavskiy I. A. Polinominal'naya approksimatsiya dlya nelineynykh zadach otsenivaniya i upravleniya [Polynomial approximation for nonlinear estimation and control problems]. Moscow, Fizmatlit Publ., 2006, 208 p.


Latintsev Sergey Valerivich – engineer, JSС “Academician M. F. Reshetnev” Information Satellite Systems”.

E-mail: lat.sv@mail.ru.

Murygin Alexander Vladimirovich – Dr. Sc., professor, head of Department of Information and Management

Systems, Reshetnev Siberian State University of Science and Technology. E-mail: vm514@mail.ru.


  MATHEMATICAL MODEL FOR GEOSTATIONARY SPACECRAFT DISTURBING TORQUES DETERMINATION