UDK 539.21:537.86 DoI: 10.31772/2587-6066-2018-19-1-152-160
DIELECTRIC PROPERTIES OF SOLID SOLUTIONS OF MANGANESE CHALKOGENIDES SUBSTITUTED BY IONS OF GADOLINIUM
A. M. Kharkov, M. N. Sitnikov, A. N. Masyugin, V. V. Kretinin, U. I. Rybina
Reshetnev Siberian State University of Science and Technology 31, Krasnoyarskiy Rabochiy Av., 660037, Russian Federation E-mail: khark.anton@mail.ru
The paper describes materials based on solid solutions GdxMn1–xS and GdxMn1–-xSe, which in the future can be used in aerospace industry as sensors, detectors, and information writer-readers. In solid solutions GdxMn1–xA (A = S, Se) (x ≤ 0.2), capacitance and tangent of the dielectric loss angle were measured at the frequency of 10 kHz without a magnetic field and in the magnetic field of 8 kOe in the temperature range 100–500 К. The growth of the dielectric permittivity and the maximum of dielectric losses in the low-temperature region were observed. The displacement of the temperature of the maximum of the imaginary part of the permittivity in the direction of high temperatures is found with increasing concentration. For two compositions, a magnetocapacitance effect was observed. The magnetocapacitance effect δεН = (ε(Н,T)−ε(0,Т))/ε(0,Т)) was determined as a result of investigation of the complex dielectric permittivity. The synthesis of new chalcogenide compounds in the cationic substitution of manganese by gadolinium in the MnS and MnSe systems will make it possible to clarify the effect of the anion system, as a result of studying its magnetoresistive properties with concentration in the gadolinium ion flux region along the x ≤ 0.2 lattice. Dielectric losses are described in the Debye model with the freezing of dipole moments and in the model of orbitalcharge ordering.
solid solutions, electrical capacity, dielectric permittivity, magneto-capacitance effect.
References

1. Eerenstein W., Mathur N., Scott J. Multiferroic and magnetoelectric materials. Nature. 2006, Vol. 442, P. 759–765.

2. Pyatakov A. P., Zvezdin A. K. [Magnetoelectric materials and multiferroics]. UFN. 2012, Vol. 182, No. 6, P. 593–620 (In Russ.).

3. Yang J. C., He Q., Suresha S. J., Kuo C. Y., Peng C. Y., Haislmaier R. C., Motyka M. A. Orthorhombic BiFeO3. Phys. Rev. Lett. 2012, Vol. 109, P. 247606.

4. Kambe T., Fukada Y., Kano J., Nagata T., Okazaki H., Yokoya T., Wakimoto S., Kakurai K., Ikeda N. Magnetoelectric effect driven by magnetic domain modification in LuFe2O4. Phys. Rev. Lett. 2013, Vol. 110, P. 117602.

5. Scaramucci A., Bousquet E. Linear Magnetoelectric Effect by Orbital Magnetism. Physical Review Lett. 2012, Vol. 109, No. 19, P. 654–662.

6. Kagan M. U., Kugel K. I. [Inhomogeneous charge states and phase separation in manganites]. UFN. 2001, Vol. 171, P. 577–596 (In Russ.).

7. Kugel K. I., Rakhmanov A. L., Sboychakov A. O., Khomskii D. I. Doped orbitally ordered systems: Another case of phase separation. Phys. Rev. B, 2008, Vol. 78, P. 155113.

8. Maxwell J. C. Treatise on Electricity and Magnetism. 3rd ed. Dover, New York, 1991, 335 p.

9. Catalan G. Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 2006, Vol. 88, P. 902–908.

10. Parish M. M., Littlewood P. B. Magnetocapacitance in non-magnetic inhomogeneous media. Phys. Rev. Lett. 2008, Vol. 11, P. 99–105.

11. Aplesnin S. S., Bandurina O. N., Ryabinkina L. I., Romanova O. B., Eremin E. V., Gorev M. V., Vorotynov A. M., Balaev D. A., Vasilev A. D., Galyas A. I., Demidenko O. F., Makovetskiy G. I. [The relationship of the magnetic and electrical properties of chalcogenides MnSe1–xTex]. Izvestiya RAN. Seriya fizicheskaya. 2010, Vol. 74, P. 741–743 (In Russ.).

12. Costa M. M. R., de Almeida M. J. M., Nuttall W. J., Stirling W. G., Tang C. C., Forsyth J. B., Cooper M. J. A magnetic x-ray diffraction investigation of gadolinium selenide. J. Phys.: Condens. Matter. 1996, Vol. 8, P. 2425.

13. Romanova O. B., Ryabinkina L. I., Sokolov V. V., Pichugin A. Yu., Velikanov D. A., Balaev D. A., Galyas A. I., Demidenko O. F., Makovetskii G. I., Yanushkevich K. I. Magnetic properties and the metalinsulator transition in GdxMn1–xS solid solutions. Solid State Comm. 2010, Vol. 150, P. 602–604.

14. Aplesnin S. S., Ryabinkina L. I., Romanova O. B., Sokolov V. V., Pichugin A. Yu., Galyas A. I., Demidenko O. F., Makovetskiy G. I., Yanushkevich K. I. [Magnetic and electric properties of the cation-substituted sulfides MexMn1–xS (Me = Co, Gd)]. FTT. 2009, Vol. 51, P. 661–664 (In Russ.).

15. Aplesnin S. S., Sitnikov M. N. [Magnetotransport effects in the ferromagnetic state in GdxMn1–xS]. ZhETF. 2014, Vol. 100, P. 104–110 (In Russ.).

 


Kharkov Anton Mikhailovich – Cand. Sc., Docent, Department of Physics, Reshetnev Siberian State University

of Science and Technology. E-mail: khark.anton@mail.ru.

Sitnikov Maxim Nikolaevich – Cand. Sc., Docent, Department of Physics, Reshetnev Siberian State University

of Science and Technology. E-mail: kineru@mail.ru.

Masyugin Albert Nikolaevich – postgraduate student, Reshetnev Siberian State University of Science and

Technology. E-mail: albert.masyugin@mail.ru.

Kretinin Vasilii Vasilievich – postgraduate student, Reshetnev Siberian State University of Science and

Technology. E-mail: kret_vas@mail.ru.

Rybina Ulyana Ilinishna – student, Reshetnev Siberian State University of Science and Technology.


  DIELECTRIC PROPERTIES OF SOLID SOLUTIONS OF MANGANESE CHALKOGENIDES SUBSTITUTED BY IONS OF GADOLINIUM