UDK 621.762 DoI: 10.31772/2587-6066-2018-19-1-108-119
STUDY OF CONSOLIDATION FEATURES FOR FRAGMENTALLY NANOSTRUCTURED HARD METAL COMPOSITES
Yu. I. Gordeev1, V. B. Jasinski1, N. E. Anistratenko1, A. S. Binchurov1, V. N. Vadimov1, 2*
1Siberian Federal University 79/10, Svobodny Av., Krasnoyarsk, 660041, Russian Federation 2JSC “Academician M. F. Reshetnev” Information Satellite Systems” 52, Lenin Str., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation *E-mail: vladimir-vadimov@mail.ru
The results of experimental studies combined with modeling and prediction methods for the properties of hard metal composites show that modification with additives of ceramic nanoparticles and composite powders (WC-Co) allows to control microstructure parameters and provides the increase in binding durability and the level of physicomechanical properties of a hard alloy in general. Simultaneous complex application of submicrocrystalline WC carbides coated with Co layer and alloying additives of Al2O3 nanoparticles – grain growth inhibitors of the main phase, can be considered as the most perspective direction of nanostructured hard metal with increased hardness, strength and crack resistance production. The coating of carbide particles with a binder layer is an effective starting method that allows to obtain a volumetric billet with maintaining the unique properties of the initial nanopowders and ensures a uniform distribution of the phases (WC, Co, Al2O3). Such a multiphase fragmented nanostructured composite is characterized by additional heterogeneity, determined by differences in size and elastic phases properties. By combining the sizes and properties of the phase components in such a heterogeneous composite, it is possible to provide an increase in the fracture energy, i. e., Palmkvist crack resistance up to 16–18 MPa m1/2 (due to inhibition on nanoparticles inclusions, stress reliefs and changes in intercrystalline crack trajectory, its length decrease). Based on the proposed stereological models and the experimentally established relationships between composition and microstructure parameters, the required volume concentrations of nanoparticles additives and composite powders (WC–Co) were determined.
hard metal composites, nanopowders of ceramic, inhibitors, composite carbides, modeling and microstructure parameters, fracture resistance.
References

1. Fang Zak Z., Wang Xu, Taegong Ryu, Kyu Sup Hwang, Sohn H. Y. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review Int. Journal of Refractory Metals & Hard Materials. 2009, Vol. 27, P. 288–299.

2. Andrievski R. A., Glezer A. M. Strength of nanostructures. Physics-Uspekhi. 2009, Vol. 52, No. 4, P. 315–334.

3. Panov V. S., Zaitsev A. A. Trends of development the technology ultrafine and nanosized tungsten carbide WC–Co – A review Proceedings of the universities. Powder metallurgy and functional coatings. 2014, No. 3, P. 38–48.

4. González Oliver C. J. R., Álvarez E. A., García J. L. Kinetics of densification and grain growth in ultrafine WC-Co composites. Int. Journal of Refractory Metals and Hard Materials. 2016, Vol. 59, P. 121–131.

5. Rempel’ A. A., Kurlov A. S., Tsvetkov Yu. V. Tungsten carbide nanopowder for WC–Co hard alloys, Proceedings of the Fourth All-Union Conference on Nanomaterials. Moscow, IMET RAN Publ., 2011, P. 71.

6. Sun L., Jia C., R. Lin Cao, Lin C. Effects of Cr3C2 additions on the densification, grain growth and properties of ultrafine WC–11Co composites by spark plasma sintering. Sun, Int. J. Refract. Met. Hard. Mater. 2008, Vol. 26, P. 357–361.

7. Huang S. G., Liu R. L., Li L. NbC as grain growth inhibitor and carbide in WC–Co hardmetals. International Journal of Refractory Metals & Hard Materials. 2008, No. 26, P. 389–395.

8. Cholsong P., Ji L., Zhimeng G. Microstructure and properties of ultrafine WC-10Co composites with chemically doped VC. Rare metals. 2011, Vol. 30, No. 2, P. 183–188.

9. Vollath D., Szabo D. V. Coated nanoparticles: A new way to improved nanocomposites. Journal of Nanoparticle Research. 1999, Vol1, P. 235–242.

10. Nikolaenko I., Kedin N., Shveikin G. Synthesis of ultrafine powder (W, Ti) C by microwave heating in a stream of argon. International Journal of Materials Research. 2014, Vol. 105, No. 12, P. 1232–1235.

11. Essaki K., Rees E. J., Burstein G. T. Synthesis of Nanoparticulate Tungsten Carbide Under Microwave Irradiation. J. Amer. Ceram. Sos. 2010, Vol 93, No. 3, P. 692–695.

12. Yamamoto T., Ikuhara Y., Watanabe T. et al. High resolution microscopy study in Cr3C2-doped WC–Co. Journal of Materials Science. 2001, Vol. 36, P. 3885–3890.

13. Gordeev Y., BucaemskyА., Seher G., Teremov S. Powder metallurgy world congress and exhibition. 1998, Vol. 4, P. 140–146.

14. Gordeev Yu., Abkaryan A., Zeer G. Design and research of cemented carbides and ceramic composites modified by nanoparticles. Advanced Materials. 2012, No. 5, P. 76–88.

15. Gordeev Yu., Abkaryan A. [Possibility of increasing the strength of carbide materials and operational stability of the cutting tool through the use of thermomechanical processing] Stanki i instrument. 2013, No. 3, P. 30–34.

16. Nakamura M., Gurland J. The fracture toughness of WC–Co twoophase alloys: A preliminary model, Metall. Trans. A. 1980, Vol. 11, No. 1, P. 141–146.

17. Godse R., Gurland J. Applicability of the critical strength criterion to WC–Co, J. Mater. Sci. Eng. A. 1988, Vol. 106, P. 331–336.

18. Gordeev Yu., Abkaryan A., Zeer G., Lepeshev A. [Effect of alloying additions of ceramic nanoparticles on the structural parameters and properties of hard alloys]. Vestnik SibGAU. 2013, No. 3(49), P. 171–181 (In Russ.).

19. Gordeev Y. I., Abkaryan A. K., Binchurov A. S., Jasinski V. B., Vadimov В. Н. [Design and investigation of hard metalls composites modyfied by nanoparticles and thermomechanical treatment with a high level of mechanical and operating properties]. Vestnik SibGAU. 2014, No. 4 (56), P. 209–218 (In Russ.).

20. Kurlov A. S. Vacuum sintering of WC-8 wt.% Co hardmetals from WC powders with different dispersity. International Journal of Refractory Metals and Hard Materials. 2011, No. 29 (2), P. 221–231.

21. Gordeev Y. I., Abkaryan A. K., Binchurov A. S., Jasinski V. B. Design and Investigation of Hard Metal Composites Modified by Nanoparticles. Advanced Materials Research. 2014, Vol. 1040, P. 13–18.

22. Dvornik M. I, Mikhaylenko Ye. A. [Modeling the process of crack propagation in submicron and nanostructured hard metals]. Mechanics of composite materials and structures. 2014, Vol. 20, No. 1, P. 3–15.

23. Dvilis E. S., Khasanov O. L., Bikbaeva Z. G., Polisadova V. V., Struts V. K., Omarov G. Z., Khasanov A. O. Pattern of the B4C Ceramics Surface Deformation at Local Loading. Advanced Materials Research. 2014, Vol. 872, P. 60–64.

24. Pozdnyakov V., Glezer A. [Structural mechanisms of destruction of nanocrystalline materials]. Solid State Physics. 2005, Vol. 47, No. 5, P. 793–800.

25. Gordeev Y. I., Abkaryan A. K., Binchurov A. S., Lepeshev A. A., Yasinski V. B. Influence of Additives of Nanoparticles on Structure Formation of Fine-Grained Hardmetals. Key Engineering Materials. 2017, Vol. 743, P. 3–8.

26. Gordeev Yu., Abkaryan A., Binchurov A., Jasinski V., Karpov I., Lepeshev A., Hasanov O., Dvilis E. [Development of effective ways to control the structure and properties of carbide composites modified nanoparticles]. Journal of Siberian Federal University. Series: Techniques and Technologies. 2014, Vol. 7, No. 3. P. 270–289.


Gordeev Yuri Ivanovic – Cand. Sc., Docent, Department of Design-engineering ensuring machine-building

production, Polytechnic Institute of Siberian Federal University. E-mail: tms-mtf@rambler.ru.

Jasinski Vitaly Bronislavovich – Cand. Sc., Docent, Department of Design-engineering ensuring machine-building

production, Polytechnic Institute of Siberian Federal University. E-mail: VYasinskiy@sfu-kras.ru.

Anistratenko Nikolay Evgenievich – postgraduate student, Department of Design-engineering ensuring machinebuilding

production, Polytechnic Institute of Siberian Federal University.

Binchurov Aleksandr Sergeevich – postgraduate student, Department of Design-engineering ensuring machinebuilding

production, Polytechnic Institute of Siberian Federal University. E-mail: mexanixs@mail.ru.

Vadimov Vladimir Nikolaevich – the 2nd category design engineer, JSC “Academician M. F. Reshetnev

“Information Satellite Systems”. Е-mail: Vladimir-vadimov@mail.ru.


  STUDY OF CONSOLIDATION FEATURES FOR FRAGMENTALLY NANOSTRUCTURED HARD METAL COMPOSITES