UDK 621.383 DoI: 10.31772/2587-6066-2018-19-1-59-65
STUDY OF ANTI-REFLECTIVE COATINGS Tа2O5 / SiO2 FOR IMPROVING THE EFFICIENCY OF MODERN SOLAR CELLS FOR SPACE APPLICATIONS
M. A. Genali1*, S. K. Sharov1, A. A. Lebedev1, 2, N. T. Vagapova1, B. V. Zhalnin1
1JSC “Research and Production Enterprise “Kvant” 16, 3rd Mytischinskaya Str., Moscow, 129626, Russian Federation 2The National University of Science and Technology “MISiS” 4, Leninsky Av., Moscow, 119049, Russian Federation *E-mail: otdel_17@npp-kvant.ru
Solar cells based on AIIIBV materials in solar arrays are the main energy sources for most modern spacecraft. In spite of the fact that high characteristics have already been achieved, the work for improving solar cells is being continued due to the growth of energy consumption by spacecraft. One of the directions is decreasing solar radiation reflection by solar cell surface due to the deposition of antireflection coating (ARC). In the article we show the results of the study of ARC (Ta2O5 / SiO2). We have presented the results of spectral and thickness calculations by special software of ARC on the triple junction (InGaP / InGaAs / Ge) solar cell taking into account cell structure as well. We have performed the experiment of ARC on the glass-substrate to confirm the manufacturability of the process. ARC deposition has been made by electron-beam evaporation in vacuum. The results of investigation of spectral characteristics of samples obtained by a spectrophotometer confirm the uniformity of covering without relation to the sample position in a machine. Spectral characteristic calculations for glass-substrate coincide with experimental data. The results of studying spectral characteristics of ARC on a solar cell demonstrate good correspondence with experimental data. The electric characteristics measured by the solar simulator (AM0) before and after the ARC covering on the experimental samples show the increase of short-circuit current up to 122 mA and the rise of efficiency up to 7.5 %. We have demonstrated the results of scanning electron microscopic investigation of ARC on the different positions of solar cells.
antireflection coating (ARC), triple junction (TJ) solar cells, current-voltage characteristic, tantalum oxide (V), silicon oxide (IV).
References

1. Alferov Zh. I., Andreev V. M., Rumyantsev V. D. [Trends and prospects of the development of solar photovoltaics]. Fizika i tekhnika poluprovodnikov. 2004, Vol. 38, No. 8, P. 937–948 (In Russ.).

2. Lebedev A. A., Slyshchenko E. V., Vagapova N. T. [Modern state of solar cells for space apllication based on A3B5]. Tezisy dokladov XX Nauchno-tekhnicheskoy konferentsii molodykh uchenykh i spetsialistov OAO “RKK “Energiya” im. S. P. Koroleva” [Abstracts of the XX Scientific and Technical Conference of Young Scientists and Specialists of OJSC “RKK “Energia”, S.P. Korolev”]. Korolev, 2014, P. 466–467 (in Russ.).

3. Bahrami A., Mohammadnejad S., Soleimaninezhad S. et al. Optimized Single and Double Layer Antireflection Coatings for GaAs Solar Cells. International journal of renewable energy research. 2013. Vol. 3, No. 1, P. 79–83.

4. Koltun M. M. Selektivnyye opticheskiye poverkhnosti preobrazovateley solnechnoy energii [Selective optical surfaces of solar energy converters]. Moscow, Nauka Publ., 1979, 216 p.

5. Ritter E. [Dielectric film materials for optical applications]. Fizika tonkikh plonok. 1975, Vol. 8, P. 7–60 (In Russ.).

6. Saylan S., Milakovich T., Hadi S. A. et al. Multilayer antireflection coating design for GaAs0.69P0.31/Si dual-junction solar cells. Solar Energy. 2015, No. 122, P. 76.

7. Zhalnin B. V., Kagan M. B., Semenov V. V. et al. [Development and creation of pilot production of nanostructured cascade solar cells in the A3B5 system]. Avtonomnaya energetika: tekhnicheskiy progress i ekonomika. 2009, No. 26 (In Russ.).

8. Slyshchenko Ye. V., Naumova A. A., Vagapova N. T. at al. [Overview of modern photovoltaic space-based converters based on AIIIBV compounds]. Sbornik tezisov konferentsii “Razrabotka, proizvodstvo, ispytaniya i ekspluatatsiya kosmicheskikh apparatov i sistem”, IV Nauchnotekhnicheskaya konferentsiya molodykh spetsialistov AO “ISS” [Proceedings of the conference “Development, production, testing and operation of space vehicles and systems”, IV Scientific and technical conference of young specialists of JSC “ISS”]. Zheleznogorsk, 2017 (In Russ.).

9. Furman Sh., Tikhonravov A. V. Basics of optics of multilayer systems. Editions Frontiers. Gif-sur Yvette, 1992, P. 242.

10. Forbes D., Hubbard S. Solar-cell-efficiency enhancement using nanostructures. Solar & Alternative Energy, SPIE, 2010. Avalible at: http://spie.org/newsroom/3124-solar-cell-efficiency-enhancement-using-nanostructures?SSO=1 (assessed 25.04.2017).

11. Nanolithogphy Research Labs. Optical Properties of Thin Films for DUV and VUV Microlithograph. Available at: http://www.rit.edu (assessed 27.04.2017).

12. Ofitsial’niy sait fiziko-tekhnicheskogo instituta imeni A. F. Ioffe Rossiyskoy Akademii Nauk [The official website of the Physico-Technical Institute named after A. F. Ioffe Russian Academy of Sciences. N, k database on NSM]. Available at: http://www.ioffe.ru (assessed 25.04.2017).

13. Refractive index database. Base of physical parameters of materials. Available at: http://refractiveindex.info (assessed 03.03.17).

14. Levinshtein M., Rumyantsev S., Shur M. Handbook series semiconductor parameters. Ioffe Institute and Rensselaer Polytechnic Institute. 1999, Vol. 2.

15. Naumova A. A., Vagapova N. T., Lebedev A. A. [Modeling and calculation of ohmic and optical losses in modern solar cells based on InGaP / InGaAs / Ge]. Tezisydokladov XXI Nauchno-tekhnicheskoy konferentsii molodykh uchenykh i spetsialistov OAO “RKK “Energiya” im. S. P. Korolova. [Abstracts of the XXI Scientific and Technical Conference of Young Scientists and Specialists of JSC “RKK “Energia”, S. P. Korolev”]. Korolev, 2017, P. 130–131 (In Russ.).

16. Tsynikin S. A., Lednev A. M., Lebedev A. A. IVCAnalysis Programma analiza vol’t-ampernykh kharakteristik fotoelektricheskikh preobrazovateley i kartografirovaniya dannykh FEP po strukture risunka fotoshablona plastiny [Program for the analysis of current- voltage characteristics of photoelectric converters and mapping of FEP data on the structure of the pattern of a photomask plate]. Certificate of state registration of the program is RF № 2014662567, 03.12.2014.

17. Lebedev A. A., Lednev A. M., Tsynikin S. A. [Construction of a system for tracking the technology of manufacturing solar cells for space applications based on A3B5 compounds]. Tezisy dokladov XX Nauchnotekhnicheskoy konferentsii molodykh uchenykh i spetsialistov OAO “RKK “Energiya” im. S. P. Koroleva” [Abstracts of the XX Scientific and Technical Conference of Young Scientists and Specialists of OJSC “RKK “Energia”,

S. P. Korolev”]. Korolev, 2014, P. 466–467 (In Russ.).


Genali Marina Aleksandrovna – senior research scientist, JSC “Research and Production Enterprise “Kvant”.

E-mail: marinagenali@gmail.com.

Sharov Sergey Konstantinovich – Cand. Sc., senior principal manufacturing engineer, JSC “Research and

Production Enterprise “Kvant”. E-mail: otd_17@npp.kvant.

Lebedev Andrey Alexandrovich – senior research scientist, JSC “Research and Production Enterprise “Kvant”;

the 2nd category engineer, Department of Physical Chemistry, National Research Technological University “MISIS”.

E-mail: otdel_17@kvant.ru.

Vagapova Nargiza Tukhtamyshevna – Cand. Sc., leading researcher, JSC “Research and Production Enterprise

“Kvant”. E-mail: otdel_17@kvant.ru.

Zhalnin Boris Viktorovich – Cand. Sc., head of department, JSC “Research and Production Enterprise “Kvant”.

E-mail: otdel_17@kvant.ru.


  STUDY OF ANTI-REFLECTIVE COATINGS Tа2O5 / SiO2 FOR IMPROVING THE EFFICIENCY OF MODERN SOLAR CELLS FOR SPACE APPLICATIONS