UDK 537.32 DoI: 10.31772/2587-6066-2018-19-1-17-21
CALCULATION OF CHARACTERISTICS OF THERMOELECTRIC COOLING SYSTEM OF HEAT-LOADED ELEMENTS OF RADIO ELECTRONIC EQUIPMENT
E. N. Vasil’ev
Krasnoyarsk Science Centre SB RAS, Institute of Computational Modelling SB RAS 50/44, Akademgorodok, Krasnoyarsk, 660036, Russian Federation E-mail: ven@icm.krasn.ru
Modern technologies make it possible to construct electronic devices that combine small sizes and high energy consumption, which requires the optimization of thermal modes. A promising direction to improve cooling intensity of the heat-loaded element (HLE) and precision of temperature control is applying thermoelectric modules (TEMs), which endow the heat release system with a cooling function, i. e., allow to reach temperatures of the HLE below ambient temperature. In the present paper, the processes of heat transfer in thermoelectric system of cooling and temperature control (TESCTC) are comprehensively considered. The temperature field in the capacity of heat-distributing plate (HDP), and influence of the heat flux inhomogeneity on the HLE temperature increase have been defined. The results of operating modes calculations, taking into account the heat-power release of HLE, performance of TEM, parameters of HDP and cooler, and magnitude of thermal resistance of thermal contacts have been presented. The calculation method allows to determine the temperature of HLE and to optimize TESCTC modes to achieve maximum cooling efficiency and lower energy consumption. It has been found that the optimal power supply current of TEM, corresponding to the modes with the maximum efficiency of cooling, depends on the thermal resistance of the heat sink system and the power of the heat load.
thermoelectric module, heat mode, heat-loaded element, cooling system, thermal resistance.
References

1. Nenashev A. P. Konstruirovanie radioelektronnykh sredstv [Designing of radio-electronic means]. Moscow, Vysshaya Shkola Publ., 1990, 432 p. (In Russ.).

2. Chang Y. W., Chang C. C., Ke M. T., Chen S. L. Thermoelectric air-cooling module for electronic devices. Applied Thermal Engineering. 2009, Vol. 29, No. 13, P. 2731–2737.

3. Huang H. S., Weng Y. C., Chang C. C., Chen S. L., Ke M. T. Thermoelectric water-cooling device applied to electronic equipment International Communications in Heat and Mass Transfer. 2010, Vol. 37, No. 2, P. 140–146.

4. Zhu L., Tan H., Yu J. Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications. Energy conversion and management. 2013, Vol. 76, P. 685–690.

5. Gladushchenko V. N., Derevyanko V. A., Vasil’ev E. N. et al. [Thermoelectricity in engineering problems of the modern technology of cooling]. Elektronnye i elektromekhanicheskie sistemy i ustroistva [Electronic and electromechanical systems and devices]. Tomsk, AO NPC Polus Publ., 2016, P. 177–183 (In Russ.).

6. Derevyanko V. A., Gladushchenko V. N., Vasil’ev E. N. et al. Termoelektricheskiy blok okhlazhdeniya [Thermoelectric cooling module]. Patent RF, no. 2511922, 2014.

7. Vasil’ev E. N. [Mathematical Model for the Calculation of the Characteristics of the Cooling Thermoelectric Modules]. Journal of Siberian Federal University. Engineering & Technologies. 2015, Vol. 8, No. 8, P. 1017–1023 (In Russ.).

8. Vasil’ev E. N., Derevyanko V. A. [Сalculation of thermoelectric modules efficiency for radio electronic components cooling]. Materialy XX Mezhdunar. nauch. konf. “Reshetnevskie chteniya” [Materials XVII Intern. Scientific. Conf “Reshetnev reading”]. Krasnoyarsk, 2013, P. 211–213 (In Russ.).

9. Vasil’ev E. N., Derevyanko V. A. [Analysis of thermoelectric modules efficiency in cooling systems]. Vestnik SibGAU. 2013, No. 4(50), P. 9–13 (In Russ.).

10. Vasil’ev E. N. Calculation and Optimization of Thermoelectric Cooling Modes of Thermally Loaded Elements. Technical Physics. 2017, Vol. 62, No. 1, P. 90–96.

11. Vasil’ev E. N. Optimization of Thermoelectric Cooling Regimes for Heat-Loaded Elements Taking into Account the Thermal Resistance of the Heat-Spreading System. Technical Physics. 2017, Vol. 62, No. 9, P. 1300–1306.

12. Samarskii A. A. Teoriya raznostnykh skhem [The theory of difference schemes]. Moscow, Nauka Publ., 1989, 616 p. (In Russ.).

13. Glinskii I. A., Zenchenko N. V. Computer simulation of the heat distribution element for high power microwave transistors. Russian Microelectronics. 2015, Vol. 44, No. 4, P. 236–240.

14. Semenyuk V. A., Bezverkhov D. B. Modeling and Minimization of Intercascade Thermal Resistance in Multi-Stage Thermoelectric Cooler. Proc. of the XVI Int. Conf. on Thermoelectrics. Dresden, Germany, 1997, IEEE, P. 701–704.

15. Vasil’ev E. N., Derevyanko V. A., Kosenko V. E. et al. [Computational modeling of heat exchange in thermoregulation systems of space vehicle]. Vychislitel’nye tekhnologii. 2009, Vol. 14, No. 6, P. 19–28. (In Russ.).

16. Vasil’ev E. N., Nikiforova E. S. [Mathematical model of heat exchange processes in honeycomb panels with heat pipes]. Vestnik SibGAU. 2005, No. 3, P. 23–26 (In Russ.).


Vasil’ev Evgenii Nikolaevich – Cand. Sc., senior researcher, Federal research center “Krasnoyarsk Science Centre

SB RAS”, Institute of Computational Modelling SB RAS. E-mail: ven@icm.krasn.ru.


  CALCULATION OF CHARACTERISTICS OF THERMOELECTRIC COOLING SYSTEM OF HEAT-LOADED ELEMENTS OF RADIO ELECTRONIC EQUIPMENT