UDK 512.54
IMPROVING OF ESTIMATE OF THE NUMBER OF 6-APERIODIC WORDS OF FIXED LENGTH
V. I. Senashov
Institute of Computational Modeling SB RAS; 50/44, Akademgorodok, Krasnoyarsk, 660036, Russian Federation; Siberian Federal University; 79, Svobodniy Av., Krasnoyarsk, 660041, Russian Federation
W. Burnside raised the issue of locally finiteness of groups, all elements of which have finite order. A negative answer was received only in 1964 by E. S. Golod. Later S. V. Aleshin, R. I. Hryhorczuk, V. I. Sushchanskii proposed series of negative examples. Finiteness of the free Burnside group of period n installed at different times for n = 2, n = 3 (W. Burnside), n = 4 (W. Burnside, I. N. Sanov), n = 6 (M. Hall). Proof of infinity of this group for odd n ≥ 4381 was given by P. S. Novikov and S. I. Adian (1967), and for odd n ≥ 665 in the book of S. I. Adian (1975). More intuitive version of the proof for odd n > 1010 was proposed by A. Yu. Olshansky (1989). In connection with these results we consider sets of aperiodic words. Under the l-aperiodic word understand the word X if in it there is no non-empty subwords of the form Yl. We consider the question about the number of 2-aperiodic words in a two-letter alphabet and how many 3-aperiodic words in this alphabet. In the monograph of S. I. Adian (1975) shows a proof of S. E. Arshon (1937) of the fact that in the two letters alphabet there is an infinite set of arbitrarily long 3-aperiodic words. In the book of A. Yu. Olshansky (1989) a theorem on the infinity of the set of 6-aperiodic words and obtained a lower bound function for the number of words of a given length was proved. Our aim is to get more accurate estimate for the function f (n) of the number of 6-aperiodic words of given length n . The results can be applied when encoding information is used in space communications.
Keywords: group, periodic word, aperiodic word, alphabet, local finiteness.
References

1. Burnside W. On an unsettled question in the theory of discontinuous groups. Quart. J. Pure. Appl. Math., 1902, Vol. 33, P. 230–238.

2. Golod E. S. [On nil-algebras and finitely approximable groups]. Izv. AN SSSR, Ser. mat., 1964, No. 2 (28), P. 273–276 (In Russ.).

3. Aleshin S. V. [Finite automats and the Burnside problem on periodic groups]. Mat. zametki, 1972, Vol. 11, No. 3, P. 319–328 (In Russ.).

4. Grigorchuk R. I. [On Burnside problem for periodic groups]. Funktsion. analiz i yego pril., 1980, No. 1(14), P. 53–54 (In Russ.).

5. Sushchanskii V. I. [Periodic district permutation groups and unlimited Burnside problem]. DAN SSSR, 1979, Vol. 247, P. 557–560 (In Russ.).

6. Sanov I. N. [Solving the problem of Burnside for exponent 4]. Uch. Zap. LSU, 1940, Vol. 55, P. 166–170 (In Russ.).

7. Hall M. Teoriya grupp [Group Theory]. Moscow, Inostrannaya literatura Publ., 1962, 468 p.

8. Novikov P. S., Adyan S. I. [On abelian subgroups and the conjugacy problem in free periodic groups of odd order]. Izv. AN SSSR, Ser. mat., 1967, No. 1(32), P. 212– 244 (In Russ.).

9. Adyan S. I. Problema Bernsayda i tozhdestva v gruppakh [Bernside Problem and Identities in Groups]. Moscow, Nauka Publ., 1975, 336 p.

10. Olshansky A. Yu. [Groups of limited period with subgroups of prime order]. Algebra i logika, 1982, No. 5(21), P. 555–618 (In Russ.).

11. Senashov V. I. [Aperiodic words]. Materialy XIX Mezhdunar. nauch.-prakt. Konf. “Reshetnevskiye chteniya” Proceedings of XIX Intern. scientific and practical. conf. “Reshetnev Readings”] (10-14 Nov. 2015, Krasnoyarsk). Krasnoyarsk, SibSAU Publ., 2015, Part 2, P. 132–133 (In Russ.).

12. Arshon S. E. [Proof of existence of n -unit infinite asymmetric sequences]. Mat. sb., 1937, No. 4(2 (44)), P. 769–779 (In Russ.).

13. Thue A. Uber unendliche Zeichenreih. Norcke Vid. Selsk. skr., I Mat. Nat. Kl. Christiania, 1906, Bd. 7, P. 1–22.

14. Kotliarov N. V. [On the words, avoiding the squares with a possible error of substitution]. Materialy Mezhdunar. molodezhn. nauch. foruma “Lomonosov- 2014” [Proceedings of the Intern. Youth Scientific Forum “Lomonosov-2014”]. Ed. A. I. Andreev, A. V. Andrianov, E. A. Antipov. Moscow, MAX Press Publ., 2014 (In Russ.).

15. Olshansky A. Yu. Geometriya opredelyayushchikh sootnosheniy v gruppakh [Geometry of defining relations in groups]. Moscow, Nauka Publ., 1989, 448 p.

16. Gurevich G. A. [Nonrepetitive sequences]. Kvant, 1975, No. 9, P. 7–11 (In Russ.).


Senashov Vladimir Ivanovich – Dr. Sc., professor, leading researcher, Institute of Computational Modeling SB RAS; professor of Department of Algebra and Logistics, Siberian Federal University. E-mail: sen1112home@mail.ru.