UDK 620.186.14, 620.187.3
INVESTIGATION OF THE CHARACTERISTICS OF Fe3Si EPITAXIAL FILMS GROWN ON Si(111) SUBSTRATES
M. N. Volochaev, Y. Y. Loginov
Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation Kirensky Institute of Physics SB RAS 50/38, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
The results of structural studies of epitaxial films of the ferromagnetic silicide Fe3Si, grown by molecular beam epitaxy on an atomically clean surface of Si (111)7×7 at a substrate temperature of 150 °C are presented. The active study of epitaxial metal films on silicon is due to the need to increase performance, reduce size and energy efficiency of microelectronics devices used, including, in the automatic spacecraft. The study of the ferromagnetic silicide films associated with the production of nanomaterials for photonics, microsystems technology and memory devices are closely linked with the development of a new direction of spin electronics. This is due to the fact that iron silicide combines ferromagnetic and semiconductor properties. Also Fe3Si silicide has a face-centered cubic structure and a small mismatch lattice parameter with silicon (4.2 %) and germanium (0.5 %) substrates that allows grow Fe3Si singlecrystal film in the direction <111>. Using electron diffraction method the structure of the films has been studied and it is identified as a single crystal film of Fe3Si(111), as well as the thickness and roughness of the film and the angle of rotation of the crystal lattice between the Fe3Si film and Si substrate were determined. The obtained data are needed to develop the recommendations to improve the technology of growing of epitaxial ferromagnetic silicide films.
ferromagnetic silicide Fe3Si, molecular beam epitaxy, transmission electron microscopy, diffraction in a convergent beam.
References

1. Wolf S. A., Awschalom D. D., Buhrman R. A., Daughton J. M., Molnár S. V., Roukes M. L., Chtchelkanova A. Y., Treger D. M. Spintronics: a spinbased electronics vision for the future. Science. 2001, Vol. 294, P. 1488–1495.

2. Sugahara S., Tanaka M. A spin metal–oxide–semiconductor field-effect transistor using half-metallicferromagnet contacts for the source and drain. Appl. Phys. Lett. 2004, Vol. 84, P. 2307–2309.

3. Hall K. C., Flatté M. E. Performance of a spinbased insulated gate field effect transistor. Appl. Phys. Lett. 2006, Vol. 88, P. 162503.

4. Hamaya K., Ueda K., Kishi Y., Ando Y., Sadoh T., Miyao M. Epitaxial ferromagnetic Fe3Si/Si(111) structures with high-quality hetero-interfaces. Appl. Phys. Lett. 2008, Vol. 93, P. 132117.

5. Yakovlev I. A., Varnakov S. N., Belyaev B. A., Zharkov S. M., Molokeev M. S., Tarasov I. A. [The study of the structural and magnetic properties of epitaxial films Fe3Si/Si(111)]. Pisma v JETP. 2014, Vol. 99, iss. 9. P. 610–613 (In Russ.).

6. Tarasov I. A., Popov Z. I., Varnakov S. N., Molokeev M. S., Fedorov A. C., Yakovlev I. A., Fedorov D. A., Ovchinnikov S. G. Optical properties of epitaxial iron silicide film Fe3Si/Si(111) // Pisma v JETP. 2014. Vol. 99, Iss. 10, P. 651–655 (In Russ.).

7. Naik S. R., Rai S., Tiwari M. K., Lodha G. S. Structural asymmetry of Si/Fe and Fe/Si interface in Fe/Simultilayers. J. Phys. D: Appl. Phys. 2008, Vol. 41, P. 115307.

8. Varnakov S. N., Parshin A. S., Ovchinnikov S. G., Rafaja D., Kaldova L., Balayev A. D., Komogortsev S. V. Structural and magnetic properties of monolayer and multilayer films Fe/Si, received thermal spraying in an ultrahigh vacuum. Pisma v JETP. 2005, Vol. 31, Iss. 22, P. 1–8 (In Russ.).

9. Ueda K., Sadoh T., Ando Yu., Jonishi T., Narumi K., Maeda Yo., Miyao M. Temperature dependent epitaxial growth of ferromagnetic silicide Fe3Si on Ge substrate. Thin Solid Films. 2008, Vol. 517, P. 422–424.

10. Hsu Y. L., Lee Y. J., Chang Y. H., Huang M. L., Chiu Y. N., Ho C. C., Chang P., Hsu C. H., Hong M., Kwo J. Structural and magnetic properties of epitaxial Fe3Si/GaAs heterostructures. Journal of Crystal Growth. 2007, Vol. 301–302, P. 588–591.

11. Varnakov S. N., Lepeshev A. A., Ovchinnikov S. G., Parshin A. S., Korshunov M. M., Nevoral P. Automation process equipment for producing a multilayer structure in an ultrahigh vacuum. Prib. Tehn. Exsp. 2004, No. 6, P. 125–129 (In Russ.).

12. Ishizaka A., Shiraki Y. Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE. J. Electrochem. Soc. 1986, Vol. 133, P. 666–671.

13. Tarasov I. A., Kosirev N. N., Varnakov S. N., Ovchinnikov S. G., Zharkov S. M., Shvets V. A., Tereshchenko O. E. Ellipsometric rapid method of determining the thickness and optical constants profiles during growth of nanostructures Fe/SiO2/Si(100). J. Tech. Phys. 2012, Vol. 82, P. 44–48 (In Russ.).

14. Mayer J., Giannuzzi L. A., Kamino T., Michael J., TEM Sample Preparation and FIB-Induced Damage. MRS BULLETIN. 2007, Vol. 32, P. 400–407.

15. Foltz B., Howe J. M. Prosvechivaiushaia elektronnaya mikroskopia i difraktometria materialov [Transmission Electron Microscopy and Diffractometry of Materials]. Мoscow, Tehnosfera Publ., 2011, 904 с.

16. Hirsch P., Howie A., Nicholson R., Pashley D., Whelan M. Elektronnaya mikroskopia tonkikh kristallov [Electron microscopy of thin crystals]. Мoscow, Mir Publ., 1968, 575 с.


Volochaev Mikhail Nikolaevich – postgraduate student, Reshetnev Siberian State Aerospace University; researcher of molecular spectroscopy laboratory, Institute of Physics named after L. V. Kirensky SB RAS. E-mail: volochaev91@mail.ru.

Loginov Yuri Yurjevich – Dr. Sc., professor, Vice-Rector for Science and Innovation, Reshetnev Siberian State Aerospace University. E-mail: loginov@sibsau.