UDK 539.3, 519.63
NANO MODIFICATION OF POLYMER BINDER WITH THE AIM OF IMPROVING THE PROPERTIES OF CARBON FIBRE MATERIALS
G. G. Krushenko, O. A. Iseeva
Institute of Computational Modeling SB RAS 50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation Reshetnev Siberian State University of Science and Technology 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation
One of the problems in space engineering is the reduction of masses parts, assemblies and mechanisms as the actual spacecraft, and the means to deliver it to the orbit, i. e. booster. Progressive solution of this problem is the use of socalled net (anisogrid) structures. And currently mesh structure, the material for which is carbon fiber, are widely used in space technology for the manufacture of hollow tubular and conical designs of the spacecraft. The most common method of making carbon mesh designs is the winding of carbon fibers. However, with all the positive qualities of CFRP structures, in connection with the pointedness of their structure, and their effective use is possible only under uniaxial loading when tensile and compressive stresses coincide with the fiber direction. In the case of complex resistance or bending when the material occurs in the complex stress state can cause the destruction, as from the action of shear stresses and normal stresses. Strict fiber orientation in one direction leads to anisotropy of physical and mechanical properties of unidirectional composites. When the load applied normal to the direction of the fibers is destroyed by carbon fiber construction practically without preliminary plastic deformation. The problem of improving the mechanical properties of the CFRP materials was successfully solved by introducing in the polymer binder nanopowders of different chemical compounds – a process called nanomodification. And, in this regard, the most effective was the carbon nanopowders, including nanodiamonds.
space vehicles, weight reduction, nanomodification polymer binder.
References

1. Domatyrko D. G., Litvinenko V.P. [Optimization of weight and size characteristics of space vehicles of double purpose]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2011, Vol. 5, No. 7, P. 41–42 (In Russ.).

2. Kishore N. P., Alekhya N. Reduction of mass for base structure of a spacecraft using CFRP. International Journal of Innovative Research in Science, Engineering and Technology. 2015, Vol. 4, Iss. 8, P. 7237–7243.

3. Vasil’ev V. V. Mekhanika konstruktsiy iz kompozitsionnykh materialov. [Mechanics of structures of composite materials]. Moscow, Mashinostroenie Publ., 1988, 272 p.

4. Vasiliev V. V., Barynin V. A., Razin A. F. et al. Anisogrid composite lattice structures – Development and aerospace applications. Composite Structures. 2012, Vol. 94, Iss. 3, Р. 1117–1127.

5. Komkov M. A., Tarasov V. A. Tekhnologiya namotki kompozitnykh konstruktsiy raket i sredstv porazheniya [The technology of filament winding composite structures of missiles and weapons]. Moscow, Izd-vo MGTU im. N. E. Baumana Publ., 2011, 431 p.

6. Iseeva O. A., Kravchenko Yu. S., Savitskiy V. V. et al. [Selection of the optimal configuration in the design anisogrid design]. Reshetnevskie chteniya: materialy ХХ Yubileynoy mezhdunar. nauchno.-praktich. Konf. [Reshetnev readings: proceedings of the twentieth Anniversary of the international. scientific.-practical. conf.]. 2016, Krasnoyarsk, SibSAU Publ., P. 30–32 (In Russ.).

7. Generalov A. S., Boychuk A. S., Murashov V. V. Ultrasonic strength monitoring of carbon-fiber-reinforced plastics based on adhesive prepregs. Polymer Science. Series D. 2013, Vol. 6, No. 2, Р. 143–147.

8. Poluboyarov V. A., Krushenko G. G., Cherepanov A. N. et al. [Experience in the use of ultrafine powder of natural cryptocrystalline graphite in tread rubbers]. Ul’tradispersnye poroshki, materialy i nanostruktury: Materialy mezhregion. konf. [Ultradispersed powders, materials and nanostructures: Materials interregion. conf.]. Krasnoyarsk, KGTU Publ., 1996, P. 155156 (In Russ.).

9. Smirnov O. M., Krushenko G. G., Shchipko M. L. et al. [Beneficiation of graphite ore deposits of Kureiskaya deposit]. Obogashchenie rud. 1999, No 1–2, P. 1922 (In Russ.).

10. Mineralogical and chemical analysis of graphite from Siberia. Short Report № MPSR/92/18. London : British Geological Survey, 1992, 4 p.

11. Krushenko G. G., Shchipko M. L., Goncharov V. M. et al. [New uses for graphite ore deposits of Kureiskaya]. Obogashchenie rud. 1999, No 5, P. 7–8 (In Russ.).

12. Boldyrev V. V. [Mechanochemistry and mechanical activation of solids]. Uspekhi khimii. 2006, Vol. 75, No. 3, P. 203216 (In Russ).

13. Butyagin P. Yu., Pavlichev I. K. Determination of energy yield mechanochemical reactions. Reactivity of Solids. 1986, Vol. 1, Iss. 4, P. 361-372.

14. Zhukov M. F., Cherskiy I. N., Krushenko G. G. et al. Uprochnenie metallicheskikh, polimernykh i elastomernykh materialov ul’tradispersnymi poroshkami plazmokhimicheskogo sinteza. [Strengthening of metallic, polymeric and elastomeric materials of ultradispersed powders plasma chemical synthesis]. Novosibirsk, Nauka, Sibirskoe predpriyatie RAN Publ., 312 p.

15. Zubov V. I. [About the features of the thermodynamics of ultradispersed systems]. Fizikokhimiya ul’tradispersnykh sistem: Materialy IV Vseros. Konf. [Physicochemistry of ultradisperse systems: materials of the IV Vseros. conf]. Moscow, MIFI Publ., 1998, P. 2326 (In Russ.).

16. NaBond Technologies Co., Ltd. HONG KONG (also knwon as 納邦技術有限公司) Available at: http://www.nabond.com/contact.htm (accessed 16.05.2017).

17. Almaslow A., Ratnam C. T., Ghazali M. J. et al. Effects of epoxidized natural rubber–alumina nanoparticles (ENRAN) composites in semi-metallic brake friction materials. Wear. April–May 2013, Vol. 302, Iss. 1–2, P. 1392-1396.

18. Toughening at nanoscale makes plastics suitable for aircraft use. Materials Today. 2000, Iss. 3, P. 8.

19. Anan’eva E. S., Markin V. B. [Perspectives of application of carbon fiber reinforced plastics combined filling in aerospace engineering]. Polzunovskiy vestnik. 2009, No. 4, P. 223–226 (In Russ.).

20. Moshev V. V., Svistkov A. L., Garishin O. K. et al. Strukturnye mekhanizmy formirovaniya mekhanicheskikh svoystv zernistykh polimernykh kompozitov [Structural mechanisms of the formation of mechanical properties of granular polymer composites]. Ekaterinburg, UrO RAN Publ., 1997, 508 p.

21. Puzyr A. P., Bondar V. S., Bukayemsky A. A., Selyutin G. E., Kargin V. F. Physical and chemical properties of modified nanodiamonds. In: Syntheses, Properties and Applications of Ultrananocrystalline. NATO Science Series. II. Mathematics, Physics and Chemistry, Springer. Kluver Academic Publishers B. V., 2005, Vol. 192, Р. 261–270.

22. Gunyaev G. M., Kablov E. N., Aleksashin V. M. [Modification of constructional carbon nanoparticles]. Rossiyskiy khimicheskiy zhurnal. 2010, Vol. LIV, No. 1, P. 5–8 (In Russ.).

23. Novikovskiy E. A., Anan’eva E. S. [Features of realization of technological process of modification of epoxy resins by carbon nanotubes and ultrafine particles]. Polzunovskiy vestnik. 2016, No. 1, P. 102–107 (In Russ.).

24. Dumanskiy A. M. Problemy materialovedeniya v mashinostroenii. [Problems of material science in mechanical engineering]. Moscow-Izhevsk, Institut komp’yuternykh issledovaniy Publ., 2015, 52 p.

25. Krushenko G. G. [Multi-purpose aluminum composite]. Tekhnologiya metallov. 2011, No. 12, P. 19–22 (In Russ.).


Krushenko Genry Gavrilovich – Dr. Sc., professor, chief research officer, Institute of Computational Modelling SB RAS. E-mail: genry@icm.krasn.ru.

Iseeva Olga Sergeevna – Cand. Sc., senior researcher, Federal Research Centre “Krasnoyarsk Science Centre SB RAS”, Institute of Computational Modelling SB RAS. E-mail: isaeva@icm.krasn.ru.