UDK 534.86+004.942
METAL LAYER THICKNESS INFLUENCE ON THE DISPERSION CHARACTERISTICS OF SH-WAVES IN THE STRUCTURES “ME/ZNO/ME/DIAMOND” AND “ME/ALN/ME/DIAMOND”
O. P. Zolotova, S. I. Burkov
Reshetnev Siberian State University of Science and Technology 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation Siberian Federal University 79, Svobodny Av., Krasnoyarsk, 660041, Russian Federation
The research paper presents the results of computer simulation of the influence of mass loading represented by two metal layers on variations in the phase velocity of the dispersion shear modes of the elastic wave in the piezoelectric layered structures Me/ZnO/Me/diamond and Me/AlN/Me/diamond depending on the frequency and the ratio of the metal layer thickness to the piezoelectric crystalline layer thickness. The materials of the piezoelectric layers and the substrate have a set of such significant properties as the large values of the electromechanical coupling coefficient for piezoelectric and the significant values of the phase velocities for bulk waves and surface acoustic wave in diamond. Aluminum (Al), molybdenum (Mo) and platinum (Pt) are considered as the metal layer materials, which are most often used in the manufacturing of acoustoelectronic devices. It was found that variation in the elastic wave phase velocity depends on the acoustic impedance of metal layer and its thickness. More significant changes in Δv/v values at low acoustic impedance values of the metal layer occur due to a change in the thickness of the lower electrode. However, if the acoustic impedance of the metal layer is comparable with the acoustic impedance of the substrate, the increase in Δv/v values is largely due to the thickness of the upper metal layer. The results of the simulation can be used in the development of various acoustoelectronic devices, including components of the electronic base of rocket and space technology.
piezoelectric layered structure, Love wave, mass loading, computer simulation.
References

1. Gulyaev Yu. V. Acoustoelectronics (historical review). Physics-Uspekhi. 2005, Vol. 48, No. 8, P. 847–855.

2. Al’shic V. I., Ljubimov V. N., Radovich A. [Resonant excitation of Love waves in the sandwich structures]. Fizika tverdogo tela. 1996, Vol. 38, No. 4, P. 1091–1099 (In Russ.).

3. O’Toole R. P., Burns S. C., Bastiaans G. J., Porter M. D. Thin aluminum nitride film resonators. Miniaturized high sensitivity mass sensors. Analytical Chemistry. 1992, Vol. 64, P. 1289–1294. DOI: 10.1021/ac00035a017.

4. Rey-Mermet S., Lanz R., Muralt P. Bulk acoustic wave resonator operating at 8 GHz for gravimetric sensing of organic films. Sensors and Actuators B: Chemical. 2006, Vol. 114, P. 681–686. DOI: 10.1016/j.snb.2005.04.047.

5. Gabl R., Feucht H. D., Zeininger H. et al. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosensors and Bioelectronics. 2004, Vol. 19, P. 615–620. DOI: 10.1016/S0956-5663(03)00259-8.

6. Wingqvist G., Bjurstrom J., Hellgren A. C., Katardjiev I. Immunosensor utilizing a shear mode thin film bulk acoustic sensor. Sensors and Actuators B: Chemical. 2007, Vol. 127, P. 248–252. DOI: 10.1016/j.snb.2007.07.051.

7. Nakamoto T., Moriizumi T. A theory of a quartz crystal microbalance based upon a Mason equivalent circuit. Japanese Journal of Applied Physics. Part 1. 1990, Vol. 29, P. 963–969. DOI: 10.1143/JJAP.29.963.

8. Sorokin B. P., Kvashnin G. M., Telichko A. V. et. al. Lamb waves dispersion curves for diamond based piezoelectric layered structure. Applied Physics Letters. 2016, Vol. 108, P. 113501 (5). DOI: 10.1063/1.4943945.

9. Mansfeld G. D., Alekseev S. G., Kotelyansky I. M. [Acoustic HBAR Spectroscopy of Metal (W, Ti, Mo, Al) Thin Films]. Proc. IEEE Ultrason. Symp. Atlanta, USA, 2001. P. 415–418. DOI: 10.1109/ULTSYM.2001.991652.

10. Farnell G. W. Acoustic Surface Waves: Topics in Applied Physics. Springer-Verlag, Berlin – Heidelberg – New York, 1978, 390 p.

11. Zolotova O. P., Burkov S. I., Sorokin B. P., Telichko A. V. [Elastic waves in piezoelectric layered structures]. Zhurnal Sibirskogo federal’nogo universiteta. Seriya Matematika i fizika. 2012, Vol. 5, No. 2, P. 164–186 (In Russ.).

12. Sorokin B. P., Kvashnin G. M., Telichko A. V., Burkov S. I., Blank V. D. Piezoelectric-layered structures based on synthetic diamond. Piezoelectric Materials. InTech. 2016, P. 161–199. DOI: /10.5772/61563.

13. Kuznetsova I. E., Zaitsev B. D., Joshi S. G., Kuznetsova A. S. Gravimetric sensitivity of acoustic waves in thin piezoelectric plates in the presence of liquids. Technical Physics Letters. 2006, Vol. 32, No. 8, P. 729–731. DOI: 10.1134/S1063785006080268.

14. Zhang Z., Wen Z., Wang C. Investigation of surface acoustic waves propagating in ZnO–SiO2–Si multilayer structure. Ultrasonics. 2013, Vol. 53, No. 2, P. 363–368. DOI: 10.1016/j.ultras.2012.07.002.

15. Tsubouchi K., Sugai K., Mikoshiba N. [AlN material constants evaluation and SAW properties on AlN/Al2O3 and AlN/Si]. Proc. IEEE Ultrason. Symp. Chicago, USA, 1981. P. 375–380. DOI: 10.1109/ULTSYM.1981.197646.

16. Sorokin B. P., Kvashnin G. M., Kuznetsov M. S., Telichko A. V., Burkov S. I. Experimental investigation of the linear and nonlinear elastic properties of synthetic diamond single crystal. Zhurnal Sibirskogo federal’nogo universiteta. Serija Matematika i fizika. 2013, Vol. 6, No. 1, P. 120–126 (In Russ.).

17. Macfarlane R. E., Rayne J. A., Jones C. K. Anomalous temperature dependence of shear modulus С44 for platinum. Physics Letters. 1965, Vol. 18, No. 2, P. 91–92. DOI: 10.1016/0031-9163(65)90659-1.


Zolotova Olga Pavlovna – Cand. Sc., Docent, Department of Applied Physics, Reshetnev Siberian State University of Science and Technology. Е-mail: zolotova@sibsau.ru.

Burkov Sergey Ivanovich – Dr. Sc., Docent, professor, Institute of Engineering Physics and Radio Electronics, Siberian Federal University. Е-mail: sburkov@sfu-kras.ru.