UDK 531.133.3
AUTOMATED WEIGHT COMPENSATION SYSTEM FOR GROUND-BASED TRYOUT OF SPACE VEHICLE SOLAR PANELS
A. G. Verhoglyad1, V. A. Kuklin2, 3, S. N. Makarov1, V. M. Mihalkin2, 3, V. I. Halimanovich2, 3
1Technological Design Institute of Scientific Instrument Engineering of SB RAS 41, Russkaya Str., Novosibirsk, 630058, Russian Federation 2Reshetnev Siberian State University of Science and Technology 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation 3JSC “Academician M. F. Reshetnev” Information Satellite Systems” 52, Lenin Str., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation Е-mail: verhog@tdisie.nsc.ru
In the process of ground-based tryout of solar panels placed aboard the spacecraft there appears the problem of gravity effect compensation. The energy of deployment mechanism is extremely limited, the weight and strength of the structure being calculated for weightlessness conditions. Therefore, under the force of gravity, the power of deployment drives may not be enough to complete the tryout, and the structure itself may be destroyed. Taking into account these difficulties, specialized stands the main part of which is the so-called weight compensation system are designed and created to conduct ground-based pilot tryout. Active weight compensation systems are most effective in this case. In the stands with active weight compensation systems all forces generated by the stand and movements of the stand parts occur through controlled drives. By introducing various sensors into the weight compensation system and by the use of their signals for generation of controlling actions in the control system it becomes possible to significantly increase the level of gravity effect compensation, as well as to minimize the influence of the stand parts inertia. The paper presents the results of the designing, building and testing of the automated active weight compensation system for solar panels. The system provides weight compensation when conducting ground-based experimental tryout of any objects (solar panels, rods, multi-tier spokes, etc.) having a long and transformable in one direction form for distances of the order of 20 m (longitudinal direction). This system also provides movement of the pieces of a tested object in the transverse direction and in height for distances of up to 5 m. The results of departmental tests showed that the weight compensation system with specified parameters described in this paper allows for ground-based tryout of the deployment of solar panels of all constructions, both currently existing and being developed for the future.
Keywords: solar panel, spacecraft, active weight compensation system, efficiency of the weight compensation system.
References

1. Novozhilov D. A., Grebaus E. F., Belousova O. G. Stend dlya modelirovaniya nevesomosti dvukhzvennykh mekhanizmov [Stand for simulation of weightlessness dvuhzvennyh mechanisms]. Patent SSSR. SU 555314.25.04.1977.

2. Vokhmin A. G., Podzorov V. N., Polevko I. B. i dr. Ustroistvo dlya obezveshivaniya sektsionnykh skladnykh panelei solnechnykh batarei kosmicheskogo apparata [Device for weight compensation sectional folding solar panels of the spacecraft]. Patent RF. RU2299840, 20.09.2005.

3. Brand, Klingelhofer, Hoch (DE). Device for ground-based simulating of operations of a manipulator usable in space by means of a model of a space vehicle. Pat. US 5110294A. 5.05.1992.

4. Drozdov A. A., Agashkin S. V., Mikhnev M. M., Ushakov A. R. Ustroistvo imitatsii nevesomosti mekhanizmov s gibkoi konstruktsiei [Device simulating weightlessness mechanisms with flexible design]. Patent RF. RU

2334970, G01M19/00. FGUP “Nauchno-proizvodstvennoe ob’’edinenie prikladnoi mekhaniki im. Akademika M. F. Reshetneva”. 27.01.2008.

5. Kravchenko O. A. et al. Silokompensiruyushchaya sistema [Force compensation system]. Patent RF. 139984, MPK7 G09B9. 27.04.2014.

6. Kudryavtsev I. A. Sposob imitatsii ponizhennoi gravitatsii [Way to simulate low gravity]. Patent RF.2454694, MPK7 B64G7/00, G01M 99/00. 27.06.2012.

7. Anuprienko G. E., Karpachev Yu. A., Kukhotskii L. M. et al. Ustroistvo obezveshivaniya elementov [Device for weight compensation of elements]. Pat. 1828261 RU A1 SU M. 20.09.96.

8. Hasselman, Quartararo (CA). Microgravity suspension system for simulating a weightless environment. Pat. US 5379657A. 10.01.1995.

9. Verkhoglyad A. G., Makarov S. N., Mikhalkin V. M., Stupak M. F., Shevlyakov A. V. [Automatic weightlessness system of large-size transformed constructions at opening]. Izvestiya VUZov. Priborostroenie. 2016, Vol. 59, No. 2, P. 134–142 (In Russ.).

10. Verkhoglyad A. G., Kuklin V. A., Makarov S. N. et al. [Weight compensation system for space vehicle solar panels factory testing]. Reshetnevskie chteniya : XX yubilein. Mezhdunar. Nauch.-praktich. Konf., posvyashch. Pamyati gener. Konstruktora raket.-kosmich. Sistem akad. M. F. Reshetneva (Krasnoyarsk, 09–12 noyab. 2016 g.) [Proceedings of the XX Intern. Scientific conference Reshetnev readings]. Krasnoyarsk, 2016. Ch. 1. P. 89–91.

11. Romanov A. V., Testoedov N. A. Osnovy proektirovaniya informatsionno-upravlyayushchikh i mekhanicheskikh sistem kosmicheskikh apparatov [Principles of design of instrumentation and control and mechanical systems of the spacecraft]. SPb., ANO LA “Professional”, 2015. P. 240.

12. Cha G. O., Skokov D. V., Skiba V. Yu. et al. [Vertical movement of the wheel point signage for weightlessness system]. Tekhnicheskie nauki – ot teorii k praktike. 2015, No. 53, P. 188–194 (In Russ.).

13. Cha G. O., Skokov D. V., Gleim V. R. et al. [Design of drive signs point vertical movement for weightlessness system]. Aktual’nye problemy v mashinostroenii. 2016, No. 3, P. 229–233 (In Russ.).

14. Kovshov I. V., Badanina Yu. O. [Platform of automation of component weight compensation system for large spacecraft reflector]. Vestnik SibGAU. Vol. 17, No. 1, P. 131–136 (In Russ.).

15. Platform Mitsubishi Electric MELSEC System Q and its components. Available at: http//mitsubishielectricru (accessed: 01.04.2017).

16. Voronov A. A. Osnovy teorii avtomaticheskogo upravleniya. Avtomaticheskoe regulirovanie nepreryvnykh lineinykh system [Foundations of the theory of automatic control. Automatic control of continuous linear systems]. Moscow, Energiya Publ., 1980, 309 p.

17. Dyadik V. F., Baidali S. A., Krinitsyn N. S. Teoriya avtomaticheskogo upravleniya: uchebnoe posobie [Theory of automatic control: manual]. Tomsk, Izd-vo Tomskogo politekhnicheskogo universiteta Publ., 2011. 196 p.


Verkhoglyad Aleksandr Grigor’evich – head of the laboratory, Technological Design Institute of Scientific

Instrument Engineering SB RAS. E-mail: verhog@tdisie.nsc.ru.

Kuklin Viacheslav Aleksandrovich – head of division 345, JSC “Academician M. F. Reshetnev “Information

Satellite Systems”. E-mail: VAK345@iss-reshetnev.ru.

Makarov Sergei Nikolaevich – senior researcher, Technological Design Institute of Scientific Instrument

Engineering SB RAS. E-mail: makarovsn@tdisie.nsc.ru.

Mikhalkin Vladimir Mikhailovich – deputy director, chief engineer of the Industrial Center of Large-Sized

Foldable Mechanical Systems, JSC “Academician M. F. Reshetnev “Information Satellite Systems”. E-mail:

mikhalkin@iss-reshetnev.ru.

Нalimanovich Vladimir Ivanovich – Cand. Sc., professor, director of the Industrial Center of Large-Sized

Foldable Mechanical Structures, JSC “Academician M. F. Reshetnev “Information Satellite Systems”. E-mail:

office@iss-reshetnev.ru.