UDK 629.78.03: 621.472
SOLAR THERMAL PROPULSION WITH DIFFERENT TYPES OF CONCENTRATOR-ABSORBER SYSTEM
S. L. Finogenov1, A. I. Kolomentsev1, V. P. Nazarov2
1Moscow Aviation Institute (National Research University) 4, Volokolamskoe shosse, GSP-3, А-80, Moscow, 125993, Russian Federation 2Reshetnev Siberian State Aerospace University 31, Krasnoyarskiy Rabochiy Av., Krasnoyarsk, 660037, Russian Federation
Solar thermal propulsion (STP) with high-temperature concentrator-absorber system (CAS), as a power source, is observed. Ordinary observed STP with simple single-stage isothermal absorber-heat exchanger, executed as an absolute black body, requires high accuracy of reflecting surface of solar mirror-image concentrator and highprecision tracking conditions to the Sun on active legs of multi-burn injection trajectory. Reduction of these requirements is possible at use of CAS with organization of non-uniform heating of hydrogen in absorber which temperature corresponds to exponential law of distribution of radiant flux density in focal sunlight spot. Energetic efficiency of such CAS is higher in comparison with the isothermal one. Single-stage, double-stage and extreme-not isothermal (multi-stage) CAS are considered. Results of simulation of STP with the considered CAS for upper stage application in mission of non-coplanar payload transfer from LEO to GEO are shown. It is shown that ballistic efficiency of solar upper stage with the considered STP can more than twice exceeds capabilities of modern liquidpropellant upper stages. Comparison of ballistic efficiency of STP use with different CAS as means of inter-orbital transportation is carried out. It is shown that the efficiency rises with increase of ratio of non-uniformity of hydrogen heating in sunlight absorber-heat exchanger and can be 30 % higher as compared to ordinary STP use. Such relevant CAS parameters as accuracy parameter of mirror-image concentrator and hydrogen heating temperature in the absorber-heat exchanger are considered. Optimal relevant parameters for criterion of maximum of payload mass for the considered CAS types are determined, and recommendations for their choice with technological restrictions are suggested. Dimensional parameters of concentrators for the cases of isothermal and staged absorbers are shown. Conditions of orientation to the Sun for the different CAS are observed. It is shown that requirements to the Sun tracking system in dynamic orientation mode can be quite provided by modern hardware components, especially in the case of non-uniform heating of hydrogen.
Keywords: solar thermal propulsion, solar high-temperature heat source, concentrator-absorber system, nonuniform heating, stages of heating, not isothermal sunlight absorber-heat exchanger, ballistic efficiency.
References

1. Burdakov V. P., Danilov Ju. I. Vneshnie resursy i kosmonavtika. [External recourses and cosmonautics]. Moscow, Atomizdat Publ., 1976, 552 p.

2. Kudrin O. I. Solnechnye vysokotemperaturnye kosmicheskie energodvigatel’nye ustanovki. [Solar hightemperature space power plants]. Moscow, Mashinostroenie Publ., 1987, 247 p.

3. Kudrin O. I., Danilov Ju. I. [Use of mass and energy of space as the mean for spaceflight economy increase]. Sbornik Trudov V Chteniy posvyashchyonnykh razrabotke nauchnogo naslediya i razvitiyu idey F. A. Tsandera. Sektsiya “Issledovanie nauchnogo tvorchestva F. A. Tsandera”. [Proc. of 5th Scientific Readings on elaboration of scientific heritage and development of F. A. Tsander ideas. Session “Investigations of F. A. Tsander scientific works”]. Moscow, Riga, 1979, P. 153–171 (In Russ.).

4. Finogenov S. L., Kudrin O. I. [Principles of systems analysis for solar thermal propulsion design]. Systems analysis in engineering. Moscow, Vuzovskaya kniga Publ., 2005, Vol. 8, P. 36–80 (In Russ.).

5. Akimov V. N., Arhangel’skiy N. I., Koroteev A. S., Kyz’min E. P. [Solar power propulsion plant with electrically-heated thermal storage and working medium afterburning]. Polyot. 1999, No. 2, P. 20–28 (In Russ.).

6. Koroteev A. S. [Conception of solar power propulsion plant with electrically-heated thermal storage and working medium afterburning]. Vestnik MAI. 2000, Vol. 7, No. 1, P. 60–67 (In Russ.).

7. Curtis L. A., Toelle R. G. Solar Thermal Propulsion Shooting Star Experiment. Space Technology & Applications International Forum (STAIF-98), Albuquerque, NM, Jan. 25–29, 1998.

8. Frye P. E., Kennedy F. G. Reusable Orbital Transfer Vehicles (ROTV) Applications of an Integrated Solar Upper Stage (ISUS). AIAA Paper 1997, No. 97-2981.

9. Hawk C. W., Adams A. M. Conceptual Design of a Solar Thermal Upper Stage (STUS) Flight Experiment. AIAA Paper 1995, No. 95-2842.

10. Fiot D., Estublier D. Solar Thermal Propulsion. 6th International Symposium on Propulsion for Space Transportation: Propulsion for Space Transportation of the XXIst Century. Paper no.S36.1. May 14–16, 2002. Versailles, France.

11. Shimizu M. et al. Solar Thermal Thruster Made of Single Crystal Molybdenum. Acta Astronautica, 1997, Vol. 41, No. 1, P. 23–28.

12. Grilihes V. A., Matveev V. M., Poluektov V. P. Solnechnye vysokotemperaturnye istochniki tepla dlya kosmicheskikh apparatov [Solar high-temperature heat sources for space vehicles]. Moscow, Mashinostroenie Publ., 1975, 248 p.

13. Orbit-raising and maneuvering propulsion: research status and needs. Ed. L. H. Caveny. Progress in Astronautics and Aeronautics, Published by American Institute of Aeronautics and Astronautics, Inc. New York, N. Y., 1988. Vol. 89, 454 p.

14. Kvasnikov A. V., Kudrin O. I., Mel’nikov M. V. [Laboratory of radiant and solar energy for investigation of processes in high-temperature installations]. Doklady Vsesoyuznoj konferentsii po ispol'zovaniyu solnechnoj energii. [Reports of the USSR Conference on Solar Energy Use]. Moscow, VNIIT Publ., 1969, P. 297–343 (In Russ.).

15. Kudrin O. I., Finogenov S. L. [Solar thermal propulsion with staged “absorber-thermal storage” system]. Polyot, 2000, No. 6, P. 37–41 (In Russ.).

16. Finogenov S. L., Kolomentsev A. I., Kudrin O. I. [Use of different oxidizers for afterburning of hydrogen heated in rocket engine by solar energy]. Vestnik SibGAU, 2015, Vol. 16, No. 3, P. 680–689 (In Russ.).

17. Safranovich V. F., Emdin L. M. Marshevye dvigateli kosmicheskikh apparatov. Vybor tipa i parametrov [Sustainer engines for space vehicles. Choice of type and parameters]. Moscow, Mashinostroenie Publ., 1980, 240 p.

18. Piszczor M. F., Jr, Macosco R. P. A High- Efficiency Refractive Secondary Solar Concentrator for High Temperature Solar Thermal Applications. NASA/TM-2000-208401, Space Technology & Applications International Forum (STAIF-98), Albuquerque, NM. Jan. 25–29, 1998.

19. Boykachev V. N., Gusev Yu. G., Zhasan V. S., Kim V. P., Martynov M. B., Murashko V. M., Nesterin I. M., Pil’nikov A. V., Popov G. A. [About the possibility of development of electro-propulsion plant for power of 10–30 kWatt on the base of bimodal engine SPD-140D]. Kosmicheskaya tekhnika i tekhnologii. 2014, No.1 (4), P. 48–59 (In Russ.).

20. Grossman G., Williams G. Inflatable Concentrators for Solar Propulsion and Dynamic Space Power. Journal of Solar Energy Engineering, November 1990, Vol. 112, P. 229–236.

21. Kudrin O. I., Polue’ktov V. P., Kochetov V. K., Vasil’ev Yu. B. [Stand for dynamic tracking to the Sun and its characteristics] Doklady Vsesoyuznoy konferentsii po ispol’zovaniyu solnechnoy e’nergii [Reports of the USSR Conference on Solar Energy Use]. 17–21 July 1969. Sektsiya S-3 (In Russ.).

22. Rubanovich I. M. [About influence of tracking to the Sun on solar installations]. Geliotekhnika, 1966, No. 4, P. 44–49 (In Russ.).


Finogenov Sergei Leonardovich – senior researcher, Department of Rocket Engines, Moscow Aviation Institute.

E-mail sfmai2015@mail.ru.

Kolomentsev Alexander Ivanovich – Cand. Sc., professor, Department of Rocket Engines, Moscow Aviation

Institute. E-mail a.i.kolomentsev@yandex.ru.

Nazarov Vladimir Pavlovich – Cand. Sc., professor, Head of Department of Engines for Flight Vehicles,

Reshetnev Siberian State Aerospace University. E-mail nazarov@sibsau.ru.