UDK 621.757
SOME TOOLS AND WAYS OF CONNECTING THE MATING PARTS OF AEROSPACE PRODUCTS
G. G. Krushenko1, I. V. Kukushkin2
1Institute of Computational Modeling SB RAS 50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation 2Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation
Almost all products of various branches of industrial production consist of components, some of which are connected in the nodes and the mechanisms through various ways and means. Such connections can be made, both in the mobile and fixed variants, which, in turn, may be made detachable and non-detachable, and used methods and technologies which are chosen depending on the technical capabilities, security, collect the product in operation, cost and other factors. In some cases it is more profitable to collect node/mechanism or product originating from connected via fastener components than manufacturing it from a “solid” material (monolithic bulk material). In the manufacture of complex products, for example, related to aerospace engineering, to ensure the accuracy and reliability of assembly a wide range of technologies of details connection, especially of dissimilar materials, including: cold welding, which is performed without heating the joined parts, a tight coupling occurs as a result of their compression until plastic deformation, friction welding with stirring, mechanical clinching, riveting technology and other, is applied. The article provides the specific examples of the connection parts in the manufacture of products of aerospace industry, such as welding (case aircraft), soldering (combustion chamber), the connection tightness (cylinder head), the connection with bolts (case turbo-pump assembly), pins (blades directing vanes of the fan gas turbine engine) and other.
Keywords: aerospace techniques, methods and means of joining parts.
References

1. Groche P. et al. Joining by forming – A review on joint mechanisms, applications and future trends. Journal of Materials Processing Technology. October 2014, Vol. 214, Iss. 10, P. 1972–1994.

2. Horvat G. L., Surface S. C. Assembled camshafts for automotive engines. Journal of Materials Shaping Technology. September 1989, Vol. 7, Iss. 3, P. 133–136.

3. Meusburger P. Lightweight design in engine construction by use of assembled camshafts. MTZ Worldwide. Ausgabe. Nr.: 2007-08, Vol. 67, P. 10–12.

4. Kenichiro Mori et al. Joining by plastic deformation. CIRP Annals – Manufacturing Technology. 2013, Vol. 62, Iss. 2, P. 673–694.

5. Chuan Fei Guo et al. Deformation-induced coldwelding for self-healing of super-durable flexible transparent electrodes. Nano Energy. September 2014, Vol. 8, P. 110–117.

6. Maltin C. A. et al. The potential adaptation of stationary shoulder friction stir welding technology to steel. Materials & Design. December 2014, Vol. 64, P. 614–624.

7. Yohei Abe et al. Mechanical clinching of ultra-high strength steel sheets and strength of joints. Journal of Materials Processing Technology. October 2014, Vol. 214, Iss. 10, P. 2112–2118.

8. Mori K., Abe Y., Kato T. Self-pierce riveting of multiple steel and aluminium alloy sheets. Journal of Materials Processing Technology. October 2014, Vol. 214, Iss. 10, P. 2002–2008.

9. Hartman D. A., Davé V. R., Cola M. J. In-process quality assurance for aerospace welding. Welding Journal. February 2009, Vol. 88, No. 1, P. 28–31.

10. Rauba A. A., Bychkov G. V., Obryvalin A. V. et al. Tekhnologiya konstruktsionnykh materialov [Structural material technology]. Omsk, Omskiy gos. un-t putey soobshcheniya Publ., 2011, 26 p.

11. Krushenko G. G., Musokhranov Ju. M., Jamskikh I. S. et al. Sposob modifitsirovaniya liteynykh alyuminievykh splavov evtekticheskogo tipa [The method of inoculation of cast aluminum alloys of eutectic type]. Patent RF, no. 831840, 1981.

12. Morokhov I. D., Trusov L. I., Chizhik S. P. Ul’tradispersnye metallicheskie sredy [Ultrafine metal environment]. Moscow, Atomizdat Publ., 1977, 264 p.

13. Danilov V. I. Stroenie i kristallizatsiya zhidkosti [Structure and crystallization of the liquid]. Kiev, Izd-vo AN UkrSSR Publ., 1956, 568 p.

14. Krushenko G. G. [The role of the nanopowder particles in the formation of the structure of aluminum alloys]. Metallurgiya mashinostroeniya. 2011, No. 1, P. 20–24 (In Russ.).

15. Krushenko G. G. [Nanopowders of chemical compounds as a means of improving the quality of the metal and structural strength]. Zavodskaya laboratoriya. 1999, Vol. 65, No. 11, P. 42–50 (In Russ.).

16. Moskvichev V. V., Krushenko G. G., Burov A. E. et al. Nanoporoshkovye tekhnologii v mashinostroenii [Nanopowder technology in mechanical engineering]. Krasnoyarsk, Sibirskiy federal’ny universitet Publ., 2013, 186 p.

17. Krushenko G. G., Mishin A. S. [Welding sheets of alloy AMg6 rod containing ultra-fine powders]. Svarochnoe proizvodstvo. 1995, No. 1, P. 2–3 (In Russ.).

18. Dodin G. V., Kleyman V. L., Nikolaev V. M. Voprosy tekhnologicheskogo obespecheniya pri sozdanii ballisticheskikh raket podvodnykh lodok [Issues of technological support in the ballistic missile submarines]. 1997 (In Russ.). Available at: http://makeyev.msk.ru/pub/msys/1997/technology.html (accessed 21.10.2014).

19. Vozdeystvie vysokokontsentrirovannykh potokov energii na materialy s tsel’yu izmeneniya ikh fizikokhimicheskikh svoystv i uluchsheniya ekspluatatsionnykh kharakteristik. Sibirskoe otdelenie RAN v 2007 godu [Th impact of highly concentrated streams of energy to materials to change their physical and chemical properties and improved performance. Siberian branch of the Russian Academy of Sciences in 2007]. Novosibirsk, Izd-vo SO RAN Publ., 2008, P. 138–139.

20. Lashko S. V., Lashko N. F. Payka metallov [Brazing of metals]. Moscow, Mashinostroenie Publ., 1988, 376 p.

21. Moiseev V. A., Tarasov V. A., Kolmykov V. A. et al. Tekhnologiya proizvodstva zhidkostnykh raketnykh dvigateley [Production technology of liquid rocket engines]. Moscow, Izd-vo MGU Publ., 2008, 381 p.

22. Bratuhin N. A., Kodencev S. N., Petrenko V. S. et al. Sposob izgotovleniya sopla kamery sgoraniya zhidkostnogo raketnogo dvigatelya [A method of manufacturing a nozzle of the combustion chamber liquid propellant rocket engine]. Patent RF, no. 2519003, 2014.

23. Mishin A. S., Podvezenny V. N. [The effect of thermal pre-treatment on the dimensional changes of the parts of Maraging steels]. Problemy tekhniki i tekhnologii ХХI veka: Tez. dokl. nauchno-tekhnich. konf. [Problems of engineering and technology of the XXI century: Tez. rep. Scientific-Technical. Conf.]. Krasnoyarsk, KGTU, 1994, P. 62–63 (In Russ.).

24. Biront V. S., Krushenko G. G. [Influence of thermal and thermocyclic treatment on the structure and properties of Maraging steel]. Zhurnal Sibirskogo federal’nogo universiteta. Seriya “Tekhnika i tekhnologii”. 2008, Vol. 1, No. 3, P. 247–255 (In Russ.).

25. Belkin I. M. Dopuski i posadki [Tolerances and landing]. Moscow, Mashinostroenie Publ., 1992, 528 p.

26. Gaffanov R. F., Shchenyatskiy A. V. [The formation of compounds with tightness collected by thermal method]. Vestnik IzhGTU. 2008, No. 3, P. 6–9 (In Russ.).

27. [Fundamentals of the theory of piston engines] Osnovy teorii porshneykh dvigateley (In Russ.). Available at: http://www.aviaclub.kz/lib/engine/engine01.html (accessed 21.10.2014).

28. Burenin A. A., Dac E. P., Tkacheva A. V. [Modeling of the shrink fit technology]. Sibirskiy zhurnal industrial’noy matematiki. 2014, Vol. XVII, No. 3, P. 40–47 (In Russ.).

29. Ivanov V. K., Kashkarov A. M., Romasenko E. N. et al. [Turbopump units LRE design NPO Energomash]. Konversiya v mashinostroenii. 2006, No. 1, P. 15−21 (In Russ.).

30. Karasev P. A. [Nuclear power plants in space]. Atomnaya strategiya. 2007, No. 4, P. 16−17 (In Russ.).

31. Moracho Ramirez M. J. Nuclear installation safety: International Atomic Energy Agency (IAEA) training programmes, materials and resources. Appendix 3. Infrastructure and Methodologies for the Justification of Nuclear Power Programmes. 2012. P. 919−933.

32. US Patent 5,438,597. Container for transportation and storage of spent nuclear fuel. Robert A. Lehnert, Технологические процессы и материалы 1061 Robert D. Quinn, Steven E. Sisley, Brandon D. Thomas. Date of Patent August 1, 1995.

33. Dvirnyy V. V., Dvirnyy G. V., G. G. Krushenko G. G. et al. [Container for transporting nuclear power plant spacecraft]. Razrabotka, proizvodstvo, ispytaniya i ekspluatatsiya kosmicheskikh apparatov i sistem: Sb. materialov III nauchno-tekhnich. konf. molodykh spetsialistov OAO “ISS” [Development, production, testing and operation of space vehicles and systems: Sa. materials of the III scientific-technical. proc. young specialists of JSC “ISS”]. Zheleznogorsk, JSC “ISS”, 2014, P. 174–176 (In Russ.).

34. Smirnov O. M., Krushenko G. G., Shhipko M. L. et al. [Beneficiation of Kureika graphite ore field]. Obogashhenie rud. 1999, No. 1−2, P. 19−22 (In Russ.).

35. Coope B. Preliminary Jameson cell flotation testing of Siberian graphite samples. Department of Mineral Resources Engineering University Nottingham, 1993, 11 p.

36. Gaydachuk A. V. [The state and prospects of application of composite materials in the aircraft engines]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya. 2004, Vol. 3, P. 11−20 (In Russ.).

37. Kolganov I. M., Dubrovskiy P. V., Arkhipov A. N. Tekhnologichnost’ aviatsionnykh konstruktsiy, puti povysheniya. Ch. 1 [Manufacturability of aircraft structures, ways of increasing. Part 1]. Ul’yanovsk, UlGTU Publ., 2003, 148 p.

38. Katsura A. V., Krushenko G. G. [Investigation of the effect of calendar time Fatigue bolt riveted joints of aircraft]. Vestnik SibGAU. 2012, No. 5(45), P. 177–181 (In Russ.).


Krushenko Genry Gavrilovich – Dr. Sc., professor, Chief research officer, Institute of Computational Modeling,

SB RAS. E-mail: genry@icm.krasn.ru.

Kukushkin Evgeniy Vladimirovich – postgraduate student, Department of Fundamentals of designing machines,

Reshetnev Siberian State Aerospace University. E-mail: ironjeck@mail.ru.