UDK 681.32
MODELING OF A FAULT TOLERANT ELEMENT FOR AEROSPACE COMPUTER COMPLEXES
S. F. Tyurin
Perm National Research Polytechnic University 29, Komsomolsky Аv., Perm, 614990, Russian Federation
The paper simulates CMOS radiation hardened by design logic element with transistor-level redundancy for highreliability aerospace applications. This element was previously used as a functionally-complete tolerance (FPTE), however, when combined four inputs there is a possibility of failure of one parry of any transistor in the upper (connection “+” power bus) or the lower parts of the circuit (bus connection “zero volts”). Increasing the probability of failurefree operation is made possible by a logical repetition of the law. To implement 2AND-NOT it needs to increase the number of inputs up to eight elements. Quadruple transistor structures, parrying one failure in each quartet are proposed. In comparison with triple redundancy win can be provided by eliminating the majority body in some cases. In order to test the failover components in production and / or exploitation it is offered to use separate control power transistor wafers with testing after such power is supplied from a single source. Modeling is performed in the system NI Multisim 10 by National Instruments Electronics Workbench Group. Simulation confirms efficiency of the proposed technical solutions. We consider the static and dynamic modeling; the conclusion about the possibility of testing such elements by using separate power supply for redundant substrates transistors is made.
Keywords: logic element, CMOS transistor, redundancy, reliabilities, radiation hardened by design, NI multisim 10 by national instruments electronics workbench group.
References

1. Chekmarev S. A. [Method and system for testing the error injection failures resistant processor of board system of spacecrafts]. Vestnik SibGAU. 2014, No. 4 (56), Р. 132–138 (In Russ.).

2. Tyurin S. F. Retention of functional completeness of Boolean functions under “failures” of the arguments. Automation and Remote Control. 1999, Vol. 60, No. 9, Part 2, P. 1360–1366.

3. Tyurin S. F., Grekov A. V. Functionally Complete Tolerant Elements. International Journal of Applied Engineering Research. 2015, Vol. 10, No. 14, P. 34433– 34442.

4. Kamenskih A. N., Tyurin S. F. Application of redundant basis elements to increase self-timed circuits reliability. Proceedings of the 2014 IEEE North West Russia Young Researchers in Electrical and Electronic Engineering Conference. ElConRusNW 2014, P. 47–50.

5. Tyurin S. F. [Functionally-complete tolerant element FPGA for aerospace computers]. Sibirskii Gosudarstvennyi Aerokosmicheskii Universitet imeni Akademika M. F. Reshetneva. Vestnik. 2016, Vol. 17, No. 2, P. 484– 489 (In Russ.).

6. Ugriumov E. P. Tsifrovaia skhemotekhnika [Digital circuitry]. St. Petersburg, BKhV Publ., 2004, 518 p.

7. Tiurin S. F., Gromov O. A. Funktsional’no-polnyi tolerantnyi element [Functionally full-tolerant element]. Patent RF, No 2438234, 2011.

8. Tiurin S. F., Gromov O. A., Grekov A. V. Funktsional’no-polnyi tolerantnyi element [Functionally full-tolerant element]. Patent RF, No 2449469, 2012.

9. Tiurin S. F., Gromov O. A., Grekov A. V., Suleimanov A. A. Funktsional’no-polnyi tolerantnyi element [Functionally full-tolerant element]. Patent RF, No. 2 496 227, 2013.

10. Dudkin Iu. P., Tiurin S. F., Iuzhakov A. A., Gromov O. A. Funktsional’no-polnyi tolerantnyi element [Functionally full-tolerant element)]. Patent RF, No. 2541854, 2015.

11. Tsybin S. Programmiruemaya kommutatsiya PLIS: vzgliad iznutri [Programmable switching FPGA Insights] (In Russ.). Available at: http://www.kite.ru/articles/plis/2010_11_56.php (accessed 16.12.2014).

12. Tiurin S. F., Nabatov A. V., Gromov O. A., Grekov A. V., Karlov D. A. Programmiruemoe logicheskoe ustroistvo [Programmable logic device]. Patent RF, No. 2503993, 2014.

13. Tiurin S. F. Programmiruemoe logicheskoe ustroistvo [Programmable logic device]. Patent RF, No. 2544750, 2015.

14. Tiurin S. F., Gorodilov A. Iu., Vikhorev R. V. Programmiruemoe logicheskoe ustroistvo [Programmable logic device]. Patent RF, No. 2547229, 2015.

15. Zolotukha R., Komolov D. Stratix III – novoe semeistvo FPGA firmy Altera [Stratix III – a new family of FPGA from Altera] (In Russ.) Available at: http://kit-e.ru/assets/files/pdf/2006_12_30.pdf (accessed 28.11.2015).

16. Ispol’zovanie resursov PLIS Stratix III firmy Altera pri proektirovanii mikroprotsessornykh yader [Resource use of Stratix III FPGA from Altera the design of microprocessor cores]. Available at: file:///C:/Users/%D0%A2%D1%8E%D1%80%D0%B8%D0%BD/Desktop/%D0%A6%D1%8B%D0%B1%D0%B8%D0%BD%2010%20%D0%B3%D0%BE%D0%B4.pdf (accessed 27.11.2015).

17. Ul’man Dzh. D. Vychislitel’nye aspekty SBIS [Computational Aspects of VLSI]. Moscow, Radioi sviaz’ Publ., 1990, 480 p.


Tyurin Sergey Feofentovich – Honored inventor of the Russian Federation, Dr. Sc., professor, professor of Department

of Automation and telemechanics, Perm National Research Polytechnic University. E-mail: tyurinsergfeo@yandex.ru.