UDK 621.396
SINGLE-FREQUENCY METHOD OF INVESTIGATION FOR DETERMINATION OF VERTICAL IONOSPHERIC SIGNAL DELAY
A. S. Kurnosov, Y. L. Fateev
Siberian Federal University, Institute of Engineering Physics and Radioelectronics 28, Kirenskogo Str., Krasnoyarsk, 660074, Russian Federation
The article describes the single-frequency method for determination of vertical ionospheric signal delay. The singlefrequency method is based on the single-layer model of the ionosphere. Therefore, it assumed that the ionospheric signal delays in radio visibility zone for each satellite are the same. To verify the functionality of the single-frequency method was created the single-frequency algorithm for determination of vertical ionospheric signal delay. The singlefrequency algorithm is based on the increment code and phase pseudorange at the carrier frequency. Using the increments of measurements allows determining signal delay without compensation of instrumental delays and ambiguities without permission. At short intervals, noise error will exceed the useful signal. To exclude this deficiency it is necessary to accumulate measurements. The single-frequency method is realized in real time. To decrease the amount of storage space, the algorithm uses cumulative sum. Interval accumulation is chosen by minimizing of the random error and immutability of trend vertical signal delay in the ionosphere. The purpose of this paper is justification of choice the interval accumulation or filtration coefficient for the singlefrequency method. The paper presents results of experimental investigations the single-frequency method for determina tion of vertical ionospheric signal delay and Klobuchar model. In experimental investigations of the single-frequency algorithm for determination of vertical ionospheric signal delay were considered the main reasons of failure of the algorithm and the ways to solve them. The main component of the budget error of the single-frequency method is the multipath effect and the noise error code measurements. The result of the experiment it was determined that the change in vertical ionospheric signal delay in the interval of 60 minutes at the measurement resolution of 30 seconds are comparable with the noise of the code measurement.
Keywords: ionosphere, single-frequency method, ionospheric delay.
References

1. Kurnosov A. S., Fateev Y. L. [Single-frequency method simulation for determining vertical ionospheric delay]. Vestnik SibGAU. 2015, Vol. 16, No. 1. P. 91–96 (In Russ.).

2. Kurnosov A. S. The single-frequency algorithm of determining ionospheric. 2015 International Siberian Conference on Control and Communications (SIBCON). Omsk, 2015. IEEE Catalog Number: CFP13794-CDR. DOI: 10.1109/SIBCON.2015.7147118.

3. Antonovich K. M. Ispol’zovanie sputnikovykh radionavigatsionnykh sistem v geodezii [Satellite navigation systems in geodesian application]. Moscow, FGUP “Kartgeotsentr” Publ., 2005, 334 p.

4. Afraymovich E. L., Perevalova N. P. GPS-monitoring verkhney atmosfery Zemli [GPS - monitoring of the Earth’s upper atmosphere]. Irkutsk, GU NTs RVKh VSNTs SO RAMN Publ., 2006, 480 p.

5. Kharisov V. N., Perov A. I., Boldin V. A. GLONASS. Printsipy postroeniya i funktsionirovaniya [GLONASS. Construction principles and operation]. Moscow, Radiotekhnika Publ., 2010, 800 p.

6. Aragon-Angel A. Contributions to ionospheric electron density retrieval. Ph.D. Thesis Doctoral Program in Aerospace Science & Technology. Polytechnic University of Catalonia. 2010, 174 p.

7. Dem’yanov V. V. Korrektsiya global’noy modeli polnogo elektronnogo soderzhaniya po tekushchim izmereniyam ionosfernoy zaderzhki signalov sputnikovykh radionavigatsionnykh sistem. Diss. kand. tekhn. nauk [Global total electron content model correction according to current measurements of GNSS signal ionospheric delay. Cand. of techn. sciences diss.]. Irkutsk, 2000, 136 p.

8. Interface Control Document (IS-GPS-200). Revision E., 12 April 2000, 185 p.

9. Dymovich N. D. Ionosfera i ee issledovanie [Ionosphere and its investigation]. Moscow, Energiya Publ., 1964, 40 p.

10. Scripps Orbit and Permanent Array Center. Available at: ftp://garner.ucsd.edu/pub/rinex/2015/ (accessed 20.12.2015).

11. Bulletin № 47/15. 2015. 22 p. Available at: ftp://ftp.glonass-iac.ru/MCC/BULLETIN/2015/weekly/C/Bulletin_N2_№47_151127.docx (accessed 20.12.2015).

12. Klobuchar J. A., Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems. 1987, Vol. AES-23, No. 3, P. 325–331.

13. Perevalova N. P. Issledovanie ionosfernykh vozmushcheniy metodom transionosfernogo GPS-zondirovaniya. Dokt. Diss. [The research of ionospheric disturbances by transionospheric GPS-radiosonde. Doct. Diss.]. Irkutsk, 2014, 286 p.

14. Polyakova A. S. Issledovanie ionosfernykh vozmushcheniy, svyazannykh s istochnikami v nizhney neytral’noy atmosfere, po dannym GPS/GLONASSradiozondirovaniya. Dokt. Diss. [The research of ionospheric disturbances connected with the sources at the bottom of a neutral atmosphere, according to the GPS / GLONASS-radiosonde. Doct. Diss.]. Irkutsk, 2014, 199 p.

15. Chipiga A. F., Slyusarev G. V. [Noise error in determining the pseudorange satellite radio navigation system at ionospheric disturbances]. Fundamental’nye issledovaniya. 2014, No. 12-2, P. 263–268 (In Russ.).


Kurnosov Anton Sergeevich – postgraduate student, Institute of Engineering Physics and Radioelectronics,

Siberian Federal University. E-mail: kurnosov89@gmail.com.

Fateev Yuri Leonidovich – Dr. Sc., professor, Department of Military, Engineering Institute, Siberian Federal

University. E-mail: fateev_yury@inbox.ru.