UDK 621.454.2
THE METHOD OF CALCULATION OF THERMAL STATE OF CHAMBER FOR STEADY STATE IMPULSE OPERATION OF LIQUID ROCKET ENGINE OF SMALL THRUST
A. G. Vorobyev*, S. S. Vorobyeva
Moscow Аviation Institute (National Research University) 4, Volokolamskoe sh., A-80, Moscow, 125993, Russian Federation
In this article, there is a method of calculation of thermal state of chamber of liquid rocket engine of small thrust. There is a physical picture of the processes occurring in the small thrust rocket engine during start and stop moments of motor. The difficulties in modeling the processes during star and stop of small thrust jet engine are presented. The cause is conjugated intra-chamber physically processes occurring at varying parameters during the mixing elements in the off-design conditions. In the article, a mathematical model to predict the thermal state of the combustion chamber for the different modes of engine operation is presented. To simulate the process of starting and stopping the engine applies a quasi-steady approach that replaces the transient process by set of steady-state processes with variable time operating parameters. The initial data for mathematical model is parameters of small thrust rocket engine, developed in Moscow Aviation Institute, working on the components of the nitrogen tetroxide and unsymmetrical dimethylhydrazine, thrust 200 N. The engine is equipped with a separated mixing head, which contains two-component jets, and film cooling by fuel that protects the combustion chamber wall. The results of mathematical simulation of the small thrust rocket engine in the steady pulse modes are given. The pulse modes at 0.05 sec and pause at 0.05 sec, pulse mode at 1 sec and pause at 1 sec and mode, consisting of sets of pulses with different duration are analyzed. The wall temperature of combustion chamber in characteristic sections, depending on the wall temperature by time for internal and external surfaces of the combustion chamber is calculated. The results of calculation for impulse mode approve a large temperature gradient on the internal wall surface of the chamber between pulses are shown.
Keywords: liquid rocket engine of small thrust, rocket thruster, thermal state, mathematical modeling, steady pulse mode, nonstationary thermal mode, combustion chamber, film cooling.
References

1. Kokorin V. V., Rutovskiy N. B., Solov’yev E. V. Kompleksnaya optimizatsiya dvigatel’nykh ustanovok sistemu upravleniya [Coplex optimization of engine unit of control system]. Moscow, Mashinostroyeniye Publ., 1983, 184 p.

2. Rutovskiy N. V. Kompleksanoye issledovaniye svoystv ZHRD maloy tyagi, primenyayemykh v sistemakh upravleniya kosmicheskimi letatel’nymi apparatami. Dis. doctora tehn. nauk [Copmplex investigation of parametrs of liquid rocket engine of small thrust using in control system of space vechicle. Doctor of tech. sci. diss.] Moscow, MAI Publ., 1973, 363 p.

3. Gladkova N. V. Razrabotka matematicheskoy modeli zhidkoctnykh raketnykh dvigateley maloy tyagi, rabotayushchikh v impul’snom rezhime. Dis. k-ta tehn nauk [Development of mathematical model of liquid rocket engine of small thrust working in impulse mode. Can. techn. sci. diss.]. Moscow, MAI Publ., 1980, 149 p.

4. Vorob’yev А. G. Eksperimental’no-teoreticheskaya model’ teplovogo sostoyaniya kamery sgoraniya dvukhkomponentnykh zhidkostnykh raketnykh dvigateley malykh tyag, rabotayushchikh na nepreryvnom rezhime. Dis. k-ta tehn nauk [Experimental and theoretical model of thermal state of combustion chamber of liquid rocket engine of small thrust working on continues mode. Can. techn. sci. diss.] Moscow, MAI Publ., 2010, 144 p.

5. Vorob’yev А. G. [Mathematical model of thermal state of LREST]. Vestnik MAI. 2007, Vol. 14, No. 4, P. 42–49 (In Russ.).

6. Berezanskaya E. L., Kurpatenkov V. D., Nadezhdina Yu. D. Raschet konvektivnykh teplovykh potokov v sople Lavalya [Calculation of convective heat flow in Laval nozzle]. Moscow, MAI Publ., 1976, 77 p.

7. Vasil’yev А. P., Kudryavtsev V. M., Kuznetsov V. А. et al. Osnovy teorii i rascheta ZHRD [The Basic of theory and calculation of LRE]. Moscow, Vysshaya Shkola Publ., 1975, 656 p.

8. Kuz’min M. P., Lagun I. M. Nestatsionarny teplovoy rezhim elementov konstruktsii dvigateley letatul’nykh apparatov [Nonstationary heat state of engine’s elements of fly vechicle]. Moscow, Mashinostroenie Publ., 1988, 240 p.

9. Egorychev V. S., Sulinov А. V. Zhidkostnyye raketnyye dvigateli maloy tyagi i ikh kharakteristiki [Liquid rocket engine of small thrust and their performance]. Electronic textbook. Samara, SGAU Publ., 2010, 103 p.

10. GOST 17655–89. Dvigateli raketnye zhidkostnye. Terminy i opredeleniya [State Standard 17655-89. Liquid
 rocket engine. Term and definition]. Moscow, Standartinform Publ., 1990. 59 p.

11. GOST 22396–77. Dvigateli Raketnye Zhidkostnye Maloy Tyagi. Terminy i opredeleniya [Liquid rocket engine of small thrust. Term and definition]. Moscow, Standartinform Publ., 1991. 17 p.

12. Bezmenova N. V. Chislennoye modelirovaniye sopryazhennogo teploobmena v ZHRD malykh tyag v tselyakh povysheniya ikh effektivnosti. Diss. Kаnd. Tehn. nauk [Numerical modeling of conjugate heat transfer in LRE of small thrust for performance improve. Cfnd. Diss.]. Samara, SGAU Publ., 2001, 176 p.

13. Aerojet Rocketdyne. Bipropellant Rocket Engines. Available at: http://www.rocket.com/propulsion-systems/ bipropellant-rockets (accessed 05.09.2016).

14. AMBR Engine for Science Missions. Available at: ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.../20090001339.pdf (accessed 05.09.2016).

15. Northrop Grumman. Bipropellant Engines & Thrusters. Available at: http://www.northropgrumman.com/Capabilities/PropulsionProductsandServices/Pages//BipropellantEnginesAndThrusters.aspx (accessed 05.09.2016).


Vorobyev Alexey Gennadievich – Cand. Sc., docent, Department of Rocket engines, faculty of Aircraft engine,

Moscow Aviation Institute. Е-mail: formula1_av@mail.ru. 

Vorobyeva Svetlana Sergeevna – senior teacher, Department of Rocket engines, faculty of Aircraft engine,

Moscow Aviation Institute. Е-mail: kinder-svetiks@yandex.ru.