UDK 621.396.933.22
CATADIOPTRIC EXPANDER FOR LASER BEAM
V. M. Vladimirov, L. V. Granitskiy, E. G. Lapukhin*
Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation
Improving the accuracy of range acquisition to the spacecraft with the help of laser location becomes possible when using the dispersion method in the determination of the average atmospheric index of refraction. The purpose of the research was to calculate the expander of the laser beam working at the same time for a wide range of wavelengths without any additional refocusing. The authors give their variant of the calculation of the optical system of the expander of laser beam for the satellite laser ranging station in the optical and near infrared wavelengths. A laser beam expander is a catadioptric system with the entrance pupil diameter about 42 mm and approximately 300 mm outlet. The collimation of the laser beam takes place in the expander without any additional refocusing for wavelengths from 435 to 2098 nm with a sevenfold increase. The beam divergences for monochromatic radiation are defined as well. In the presented optical system Coudě focus is used which allows using the equipment installed permanently. When calculating the optical system, the radii of curvature of all spherical surfaces are recommended by All Union State Standard 1807–75 which reduces the cost of manufacturing technology. In the reverse ray path the expander can be the feeding optics of object tracking lens in the optical range. To avoid vignetting when using the expander as feeding optics of CCD-camera for the satellite tracking (in the reverse ray path), the light lens diameters are calculated. The expander of laser beam may be using for satellite laser ranging station and laser radars on Earth surface.
Keywords: Satellite Laser Ranging, expander of laser beam.
References

1. Asnis L. A., Vasil’ev V. P. Lazernaya dal’nometriya [Laser distances measurement]. Moscow, Radio i svyaz’ Publ., 1995, 256 p.

2. Kozintsev V. I., Belov M. L., Orlov V. M. Osnovy impul’snoy lazernoy lokatsii [Bases of a laser location]. Moscow, MGTU Publ., 2010, 571 p.

3. Altayskiy optiko-lazernyy tsentr [Altai optical laser center] (In Russ). Available at: http://www.npk-spp.ru/deyatelnost/lazernaya-set/139-2009-04-13-12-49-38.html (accessed: 24.11.2015).

4. Zverev G. I., Gameev Yu. D., Shalaev E. A., Shokin A. A. Lazery na alyuminoittrievom granate s niodimom [YAG:Nd Lasers]. Moscow, Radio i svyaz’ Publ., 1985, 143 p.

5. Prilepin M. T. [About a new method of calculating the refraction using a dispersion of light]. Trudy Tsniigaik. 1957, Vol. 114, P. 127–135 (In Russ.).

6. Degnan J. J., “Millimeter Accuracy Satellite Laser Ranging: A Review”, in Contributions of Space Geodesy to Geodynamics: Technology, D. E. Smith and D. L. Turcotte (Eds.), AGU Geodynamics Series, 1993, Vol. 25, P. 133–162.

7. Abshire J. B., Gardner C. S. Atmospheric Refractivity Corrections in Satellite Laser Ranging. IEEE Transactions on Geoscience and Remote Sensing. 1985, Vol. GE- 23, No. 4, P. 414–425.

8. Mikhaylenko S. N., Babikov Yu. L., Golovko V. F. [Information-calculating system Spectroscopy of Atmospheric Gases. The structure and main functions]. Optika atmosfery i okeana. 2005, Vol. 18, No. 09, P. 765–776 (In Russ.).

9. Spektroskopiya atmosfernykh gazov. [Spectroscopy of Atmospheric Gases]. (In Rus). Available at: http://spectra.iao.ru/1280x796/ru/ (accessed: 10.04.2016).

10. Zakharov N. G., Antipov O. L., Sharkov V. V., Savikin A. P. [Efficient lasing at 2.1 μm in a Ho:YAG laser pumped by a Tm:YLF laser]. Kvantovaya elektronika. 2010, Vol. 40, No. 02, P. 98–100 (In Russ.).

11. Simonova G. V., Kokhanenko G. P., Ponamorev Yu. N. Apokhromaticheskiy rasshiritel’ lazernogo puchka trekhvolnovogo Nd:YAG lazera [Apochromatic expander of laser beam three-rays of Nd:YAG-laser]. Patent RF, No. 135159, 2013.

12. Kundeleva N. E., Tsurkan V. L., Sychev I. V. Teleskopicheskiy rasshiritel’ lazernogo puchka tipa Galileya [Telescopic expander of laser beam of Galilei-type]. Patent RF, No. 75245, 2008.

13. Simonova G. V., Makogon M. M., Ponamorev Yu. N., Kokhanenko G. P., Rynkov O. A. Akhromaticheskiy rasshiritel’ lazernogo puchka dlya UF i IK oblastey spectra [Achromatic expander of laser beam for ultraviolet and infrared band]. Patent RF, No. 89727, 2009.

14. Anokhina L. V., Kundeleva N. E., Yanaev V. N. Teleskopicheskiy rasshiritel’ lazernogo puchka [Telescopic expander of laser beam]. Patent RF, No. 76723, 2008.

15. Anokhina L. V., Zubelevich V. V., Pashevich Yu. A. Teleskopicheskiy rasshiritel’ lazernogo puchka tipa Galileya [Telescopic expander of laser beam of Galilei-type]. Patent RF, No. 112453, 2012.

16. Robb Paul N. Laser beam expander: 5X. Patent US, No. US5329404, 1994.

17. Robb Paul N. Laser beam expander: 10X. Patent US, No. US5305150, 1994.

18. Chetyrekhosnyy poluavtomaticheskiy sputnikovyy lazernyy dal’nomer LD-2. Tekhnicheskoe opisanie i instruktsiya po ekspluatatsii [Semi-automatic satellite laser range finder of LD-2]. Riga, 1983.

19. Lapukhin E. G., Vladimirov V. M., Granitskiy L. V. Akhromaticheskiy dvukhvolnovoy rasshiritel’ lazernogo puchka [Achromatic expander of laser beam for tworays]. Patent RF, No. 158459, 2016.

20. Neyachenko D. I. [Changes in optical part of a Satellite Laser Ranging Crimea]. Byulleten’ Ukraїns’kogo tsentru viznachennya parametrіv obertannya Zemlі. 2009, No. 3, P. 21–23 (In Russ.).

21. Lazernyy dal’nomer “Sazhen’-TM-D”. [Laser ranger Sazhen’-TM-D] (In Rus). Available at: http://www.npk-spp.ru/deyatelnost/lazernaya-set/115-2009-04-13-11-00-28.html (accessed: 15.09.2015).

22. Kvantovo-opticheskaya sistema “Sazhen’-S” [Laser system Sazhen-S] (In Rus). Available at: http://kiksssr.ru/Sazhen-C.htm (accessed: 10.04.2016).

23. Minin O. A., Neyachenko D. I., Artyomov I. V., Dmitrotsa A. I. Project to Optimize the Simeiz-1873 LSR Optical System. Bull. of the Crimean Astrophys. Obs.2008, Vol. 104, No. 1, P. 199–203.

24. Kuznetsov S. M., Okatov M. A. Spravochnik tekhnologa-optika [Handbook of the technologistoptician]. Leningrad, Mashinostroenie Publ., 1983, 414 p.

25. GOST 1807–75 Radiusy sfericheskikh poverkhnostey opticheskikh detaley. Ryady chislovykh znacheniy [State Standard 1807–75 Radiuses of spherical surfaces of optical details. Ranks of numerical values]. Moscow, IPK Standartinform Publ., 1989, 19 p.

26. Glass type LK7. Available at: http://lzos.ru/glass_pdf/LK7.pdf (accessed: 24.11.2015).

27. Glass type K8. Available at: http://lzos.ru/glass_pdf/K8.pdf (accessed: 24.11.2015).

28. Glass type TF10. Available at: http://lzos.ru/glass_pdf/TF10.pdf (accessed: 24.11.2015).

29. Catalogue of glass LZOS. Available at:http://lzos.ru/content/view/77/29/ (accessed: 24.11.2015.

30. Lapukhin E. G., Vladimirov V. M., Granitskiy L. V. [Camera lens for a satellite laser ranging for visual targeting optical range]. Vestnik SibGAU. 2016, Vol. 17, No. 1, P. 147–153 (In Russ.).


Vladimirov Valeriy Mihaylovich – Dr. Sc., professor, Reshetnev Siberian State Aerospace University.

Granitskiy Lev Vasilevich – Cand. Sc., professor, Reshetnev Siberian State Aerospace University.

Lapuhin Evgeniy Gennadevich – postgraduate student, Reshetnev Siberian State Aerospace University. Е-mail:

lapukhineg@sibsau.ru.