UDK 629.396.677
THERMO-MECHANICAL BEHAVIOR OF FORM-BUILDING EQUIPMENT FROM COMPOSITE MATERIAL FOR REFLECTOR OF SPACECRAFT ANTENNA
N. A. Berdnikova 1, 2, О. А. Belov 1, A. V. Babkin 3, 4, D. A. Belov 3, 4
1JSC “Information satellite system” named after academician M. F. Reshetnev” 52, Lenin Str., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation 2Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation 3CJSC “Institute of new carbon materials and technologies” 1/ 11, Leninskie Gory, Moskow, 119991, Russian Federation 4Lomonosov Moskow State University 1, Leninskie Gory, Moskow, 119991, Russian Federation
Complex shape composite parts are made using a mould having the same shape as the part. First, the material is laid upon the mould, and then it is polymerised at certain pressure and temperature that may reach 200°C. Therefore, the most significant problem of high-precision composite parts shaping is thermal distortion occurring during polymerisation. For many years, metal hybrid moulds have prevailed in high-precision composite parts manufacturing. A hybrid mould has invar (nickel alloy whose CLTE is close to zero) shaping plate and a support structure made of some other metal of good thermal conductivity. The attachment elements between the shaping plate and support structure allow their unrestricted expansion. Disadvantage of metal moulds are high cost, low material utilisation ratio and long manufacturing cycle. The next step in evolution of moulds for high-precision composite parts was the composite mould. Glass and carbon fibres are used for these moulds. Mould surface may be covered with a layer of ceramic or gel coat of precise thickness, which will minimise roughness, improve maintainability and increase allowable number of item separations from the mould. Composite moulds are free of disadvantages typical for metal moulds, but a number of design issues still remain, such as increase of rigidity and decrease thermal deformations during cure. This paper proposes a design of carbon composite mould for satellite antenna reflector. The main requirements for this mould are precision and stability of the shaping surface. Design solutions are validated by thermal and static mechanical analyses base on finite element method.
Keywords: spacecraft antenna, composite material, tool, thermal analyses.
References

1. Kablov E. N. [The strategic directions of materials development and technologies for processing them for the period up to 2030]. Aviatsionnye materialy i tekhnologii. 2012, No. S, P. 7–17 (In Russ.).

2. Berdnikova N. A., Ivanov A. V., Belov O. A., Chichyrin V. E. [Design of a large precision reflector of a spacecraft antenna with a contour directivity diagram]. Sibirsky Gosudarstvenny Aerokosmichesky Universitet imeni Akademika M. F. Reshetneva. Vestnik, 2016. Vol. 17, No. 2, P. 378–387.

3. Bakhrakh L. D., Galimov G. K. Zerkal’nye skaniruyushchie antenny. Teoriya i metody rascheta [Mirror scanning antenna. Theory and methods of calculation]. Moscow, Nauka Publ., 1981, P. 15–30.

4. William A. Imbriale, Steven Gao, Luigi Boccia. Space Antenna Handbook. John Wiley & Sons Ltd., United Kingdom. 2012, P. 9, 81–83, 114.

5. Nicolas Elie, Alain Lacombe, Stéphane Baril. Ultra-light reflectors: a high-performance and industrial concept for commercial telecom antennas. Paris, EADS 28th ESA Workshop. P. 3–6.

6. Michael Lang, Horst Baier, Thomas Ernst. High precision thin shell reflectors – design concept, structural optimization and shape adjustment techniques. Germany, Institute for Light Weigh Structures. P. 5.

7. Gardymov G. P., Meshkov E. V. Kompozitsionnye materialy v raketno-kosmicheskom aparatostroenii [Composite materials in rocket and space vehicle]. Saint Petersburg, SpetsLit Publ., 1999, P. 10–18.

8. Wessel, James K. Handbook of advanced materials: enabling new designs. A JOHN WILEY &SONS, INC., PUBLICATION. 2004, P. 105–211.

9. Molodtsov G. A., Bitkin V. E. Formostabil’nye i intellektual’nye konstruktsii iz kompozitsionnykh materialov [Dimensionally stable and smart structures made of composite materials]. Moscov, Mashinostroenie Publ., 2000, P. 90–120.

10. Obuhova N. S., Dryapochko Yu. V., Dobrecova I. N.Osnastka dlya formovaniya izdeliy iz polimernogo kompozitsionnogo materiala. [Tool for molding part made from composite material]. Patent RF, no. 2090364, 1994.

11. Zhukov A. V., Mushenko V. D. Sposob izgotovleniya polimernoi osnastki po modelyam [Method of polymer tool production on models]. Patent RF, no. 2456157, 2011.

12. Gromashev A. G., Gaidanskiy A. N., Tret’yakov A. V., Ul’yanov A. V. Sposob izgotovleniya voloknistikh kompozitov vakuumnoi infuziei I ustroistvo dlya osuschestvleniya sposoba [Method of fiber composite vacuum infusion production and the device for the method realization]. Patent RF, no. 2480335, 2012.

13. Babkin A. V., Erdni-Goryaev E. M., Yablokova M. Yu., Kepman A. V., Avdeev V. V. Osnastka dlya formovaniya izdelii iz polimernikh kompozitsionnikh materialov I sposob ee izgotovlenia [Tool for part molding made from polymer composite materials and method for its production]. Patent RF, no. 2576303, 2014.

14. Malugin A. S., Smirnov M. M. [Design of a largesize nonmetallic tool for molding base on polyurethane and hybrid plastics]. Trudy MAI. 2010, No. 38, P. 22–23.

15. Rudakov K. N. Femap 10.2.0. Geometricheskoe i konechno-elementnoe modelirovanie konstruktsiy [Femap 10.2.0. The geometric and finite-element modeling of structures]. KPI Publ., 2011, P. 150–380.


Berdnikova Natalya Andreevna – postgraduate student, Reshetnev Siberian State Aerospace University;

development engineer of the 2nd category, JSC “Information satellite system” named after academician M. F. Reshetnev”.

E-mail: Berdnikova-nataly@mail.ru.

Belov Dmitriy Aleksandrovich – Cand. Sc., research fellow, senior research fellow, Institute of New Carbon

Materials and Technologies, Lomonosov Moscow State University. E-mail: studd_belov@list.ru.

Belov Oleg Aleksandrovich – head of department, JSC “Information satellite system” named after academician

M. F. Reshetnev”. E-mail: boa@iss-reshetnev.ru.

Babkin Alexander Vladimirovich – head of Department of Composite materials, research fellow, Institute of New

Carbon Materials and Technologies, Lomonosov Moscow State University. E-mail: ababkin@inumit.ru.