UDK 539.21:537.86
INFLUENCE OF ANIONIC SUBSTITUTION ON THE MAGNETIC-RESISTANCE PROPERTIES OF THE MANGANESE CHALKOGENIDES
A. M. Kharkov, M. N. Sitnikov, A. N. Masyugin
Reshetnev Siberian State University of Science and Technology 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation
The paper describes the materials on the basis of solid solutions GdxMn1–xS и GdxMn1–xSe with concentration x = 0.2, which could potentially be used as sensors, sensor devices, read-write information. The magnetoresistive properties of Gd0.2Mn0.8S and Gd0.2Mn0.8Se solid solutions in a zero and magnetic field of 13 kOe in the temperature range 80–500 K were studied. In manganese sulphides GdxMn1–xS, the sign of the magnetoresistance changes from positive to negative and its maximum in the region of transition to the magnetically ordered state. The minimum is found at T = 325 K, and in the magnetic field the resistance also increases, and the minimum in its temperature dependence shifts toward high temperatures to T = 380 K. The magnetoresistance changes sigh with increasing temperature from positive to negative at T = 320 K and disappears at T = 475 K. In manganese sulfides GdxMn1–xSe, a negative magnetoresistance is observed below room temperature and a hysteresis of the current-voltage characteristics. In a magnetic field the hysteresis decreases. The change of the sign magnetoresistance with increasing temperature is established. The magnetoresistance δ = (ρ(H) – ρ(0)) / ρ(0) in GdxMn1-xSe with replacement concentration x = 0.2 changes sigh with increasing temperature at T = 320 K. At this temperature, a wide hysteresis of the current-voltage characteristic is observed. The synthesis of new chalcogenide compounds in the cationic substitution of manganese by gadolinium in the MnS and MnSe systems will make it possible to clarify the effect of the anion system, as a result of studying its magnetoresistive properties with a concentration in the gadolinium ion flux region along the x = 0.2 lattice. The experimental data are explained in the model of the orbital ordering and spin-orbit interaction.
Keywords: solid solutions, electrical resistivity, magnetoresistance, current-voltage characteristics, magnetoresistive effect.
References

1. Aplesnin S. S. Osnovy spintroniki [Basics of spintronics]. St. Petersburg, Lan’ Publ., 2010, 283 p.

2. Aplesnin S. S., Bandurina O. N., Romanova O. B., Ryabinkina L. I., Balaev A. D., Eremin E. V. The interrelation of magnetic and dielectric properties of CoxMn1–xS solid solutions. J. Phys.: Condens. Matter. 2010, Vol. 22, P. 226006.

3. Aplesnin S. S., Romanova O. B., Kharkov A. M., Balaev D. A., Gorev M. V., Vorotinov A. M., Sokolov V. V., Pichugin A. Yu. Metal-semiconductor transition in SmxMn1–xS solid solutions. J. Phys. Status Solidi (b). 2012, Vol. 249, P. 812.

4. Peters R., Kawakami N. Orbital order, metalinsulator transition, and magnetoresistance effect in the two-orbital Hubbard model. Phys. Rev. В. 2011, Vol. 83, P. 125110.

5. Volkov N. V. [Spintronics: magnetic tunnel structures based on manganites]. UFN, 2012, Vol. 182, P. 263 (In Russ).

6. Rakhmanov A. L., Kugel K. I., Blanter Ya. М., Kagan M. Yu. Resistivity and 1/f noise in non-metallic phase separated manganites. Phys. Rev. В. 2001, Vol. 63, P. 174424.

7. Kugel К. I., Rakhmanov A. L., Sboychakov A. O., Khomskii D. I. Doped orbitally ordered systems: Possible mechanism for phase separation. Phys. Rev. B. 2008, Vol. 78, P. 155113.

8. Kar S., Boncher W. L., Olszewski D., Dollahon N., Ash R. Stoll S. Gadolinium doped europium sulfide. Am. Chem. Soc. 2010, Vol. 132, P. 13960.

9. Aplesnin S. S., Sitnikov M. N. [Magnetotransport effects in the ferromagnetic state in GdxMn1–xS]. ZhETF. 2014, Vol. 100, P. 104–110 (In Russ.).

10. Aplesnin S. S., Ryabinkina L. I., Romanova O. B., Balaev A. D., Demidenko O. F., Yanushkevich K. I., Miroshnichenko [Magnetoresistance properties of solid solutions MnSe1–xTex]. FTT. 2007, Vol. 49, P. 1984 (In Russ.).

11. Golubkov A. V., Goncharova E. V., Zhuze V. P., Loginov G. M., Sergeeva V. M., Smirnov I. A. [Physical properties of rare earth chalcogenides]. Leningrad, Nauka Publ., 1973, 304 p. (In Russ.).

12. Romanova О. B., Ryabinkina L. I., Sokolov V. V., Pichugin A. Yu., Velikanov D. A., Balaev D. A., Galyas A. I., Demidenko O. F., Makovetskii G. I., Yanushkevich K. I. Magnetic Properties and the Metal-insulator transition in GdxMn1–xS solid solutions. Sol. State Comm. 2010, Vol. 150, P. 602.

13. Aplesnin S. S., Romanova О. B., Gorev M. V., Velikanov D. A., Gamzatov A. G., Aliev A. M. Magnetic and thermophysical properties of GdxMn1–xS solid solutions. J. Phys.: Cond. Matt. 2013, Vol. 25, P. 025802.

14. Aplesnin S. S., Galyas A. I., Demidenko O. F., Makovetskii G. I., Panasevich A., Yanushkevich K. I. Crystal Structure and Magnetic Properties of Mn1- xGdxSe Solid Solutions. Acta physica polonica A. 2015, Vol. 127, P. 371.

15. Rashba E. I. [Properties of semiconductors with a loop of extremums]. FTT. 1960, Vol. 2, P. 1224 (In Russ.).


Kharkov Anton Mikhailovich – Cand. Sc., Docent, Department of Physics, Reshetnev Siberian State University of

Science and Technology. E-mail: khark.anton@mail.ru.

Sitnikov Maxim Nikolaevich – Cand. Sc., senior teacher, Department of Physics, Reshetnev Siberian State

University of Science and Technology. E-mail: kineru@mail.ru.

Masyugin Albert Nikolaevich – postgraduate student, Reshetnev Siberian State University of Science and

Technology. E-mail: albert.masyugin@mail.ru.