UDK 621.771
STUDIES OF NONEQUILIBRIUM PHASES FORMED AT EXPLOSION WELDING OF TITANIUM AND ALUMINUM
F. M. Noskov 1, L. I. Kveglis 1, V. I. Mali 2, M. B. Leskov 1, E. V. Zakharova 1
1 Siberian Federal University 79g, Svobodny Av., Krasnoyarsk, 660041, Russian Federation 2 Institute of Hydrodynamics them. Lavrenteva SB RAS 15, Lavrentiev Av., Novosibirsk, 630090, Russian Federation
The work is devoted to the study of physical and chemical processes occurring in the contact zone of titanium and aluminum at the joint plastic deformation caused by explosion welding. One of the most effective ways to solve problems of materials science is the development of composite materials. An important advantage of the materials used in aircraft, is their low density, providing the possibility to receive the result composites with high specific strength. This study supports the development of composite materials based on Ti–Al, which can be used for the manufacture of gas turbine blades, and ribbed hollow weldments for the aircraft industry. Explosion welding is a high-energy process, allowing high quality joining dissimilar metal materials including various combinations of materials used for the composite metal–intermetallic compound. Ti–Al system was studied extensively enough, but there remain a number of unclear issues, namely which can form intermetallic phases with the explosion welding. conditions for the formation of a number of intermetallic phases Ti–Al: Al5Ti2, Al11Ti5, Al2Ti, AlTi3, Al3Ti, including in the framework of one formula unit of different types of structures (stable and metastable, virtual) can be implemented. During the mechano-chemical reactions in the contact zone between titanium and aluminum are formed during explosion welding nonequilibrium intermetallic phases: Al2Ti, Al5Ti3, Ti3.3Al. To study the transition zones of the samples structure used a scanning electron microscope JEOL 6390LV. The phase analysis was performed on the X-ray diffractometer company “Bruker” in the emission of copper. It is shown that the mass transfer titanium aluminum atomic clusters directional flow at a rate of at least 35 m / s occurs. Intermetallic phases formed in the contact zone during mechanochemical reactions occurring at the interface of Ti and Al. Processes of structure formation under explosion welding are explained from the standpoint of an abnormally rapid directional mass transfer under conditions of stress, creating a lattice curvature.
Keywords: explosion welding, mass transfer, Mechanochemistry, intermetallic phases, the curvature of the crystal lattice.
References

1. Badamshin I. Kh., Kusova O. I. [The temperature dependence of the elastic modulus and intermetallic TiAl Ni3Al – the main alloy components of gas turbine blades]. Vestnik UGATU. 2012, Vol. 16, No. 5(50), P. 41–43 (In Russ.).

2. Ponomarev D. V., Gadalov V. N., Bashurin A. V., Mastikhin E. Yu. [Diffusion welding of titaniumaluminum laminate panels]. Vestnik VGTU. 2008, Vol. 4, No. 10, P. 40–43 (In Russ.).

3. Vecchio K. S. Synthetic multifunctional metallic– intermetallic laminate composites. JOM. 2005, Vol. 57(3), P. 25–31. DOI: 10.1007/s11837-005-0229-4.

4. Bataev I. A., Bataev A. A., Mali V. I., Pavliukova D. V. Structural and mechanical properties of metallic– intermetallic laminate composites produced by explosive welding and annealing. Materials & Design. 2012, Vol. 35, P. 225–234. DOI: http://dx.doi.org/10.1016/j.matdes.2011.09.030.

5. Gus’kov M. S. Sozdanie vysokoprochnogo kompozitsionnogo materiala titan – alyuminiy s perforirovannym intermetallicheskim sloem i oksido-keramicheskim pokrytiem. Diss. kand. tekh. nauk [Creating hightitanium composite material – a perforated aluminum intermetallic layer and ceramic oxide coating. Cand. eng. sci. diss.]. Penza, 2015. 151 p.

6. Deribas A. A. Fizika uprochneniya i svarki vzryvom [Physics hardening and explosion welding]. Novosibirsk, Nauka Publ., 1980, P. 188.

7. Harach D. J., Vecchio K. S. Microstructure evolution in metal–intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air. Metal Mater Trans. 2001, Vol. 32A, P. 1493–505. DOI: 10.1007/s11661-001-0237-0.

8. Bychkov V. M., Selivanov A. S. [Study of weldability of heat-resistant nickel alloy EP742 by linear friction welding]. Vestnik UGATU. 2012, Vol. 16, No. 7(52), P. 112–116 (In Russ.).

9. Kuz’min S. V., Lysak V. I., Rybin V. V., Peev A. P. [Features of plastic deformation of the metal heat-affected zone at explosion welding of dissimilar metals]. Izvestiya VolgGTU. 2010, Vol. 5, No. 4, P. 4–11 (In Russ.).

10. Panin V. E., Grinjaev Ju. V. [Physical Mesomechanics – a new paradigm at the intersection of physics and mechanics of solids]. Fiz. mezomeh. 2003, Vol. 6, No. 4, P. 9–36 (In Russ.).

11. Zel’dovich Ja. B. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy [Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena]. Mosocw, Fizmatlit Publ., 2008, 656 p.

12. Panin V. E., Egorushkin V. E. Curvature. Solitons as generalized structural wave carriers of plastic deformation and fracture. Physical Mesomechanics. 2013, Vol. 16, Iss. 4, P. 267–286. DOI: 10.1134/S1029959913040012.

13. Enikolopov E. S. [Effect of high pressure on the chemical shift reaction]. Mezhdunarodnyy simpozium po khimicheskoy fizike. Sbornik materialov [International Symposium on Chemical Physics. The collection of materials]. Chernogolovka, Izd. Otdela himicheskoy fiziki Publ., 1981, P. 83 (In Russ.).

14. Dremin A. N., Breusov O. N. Processes Occurring in Solids Under the Action of Powerful Shock Waves. RUSS CHEM REV. 1968, Vol. 37, No. 5, P. 392–402. DOI: 10.1070/RC1968v037n05ABEH001643.

15. Ghosh G., Asta M. First-principles calculation of structural energetics of Al–TM (TM = Ti, Zr, Hf) intermetallics. Acta Materialia. 2005, Vol. 53, P. 3225–3252. DOI: 10.1016/j.actamat.2005.03.028.

16. Mali V. I., Pavliukova D. V., Bataev I. A., Bataev A. A., Smirnov A. A., Yrtsev P. S., Bazarkina V. V. Formation of the intermetallic layers in Ti–Al multilayer composites. Advanced Materials Research. 2011, Vol. 311–313, P. 236–239. DOI 10.4028/www.scientific.net/AMR.311-313.236.

17. Bokshtejn B. S. Diffuziya v metallah [Diffusion in Metals]. Moscow, Metallurgiya Publ.,1978, 248 p. (In Russ.).

18. Larikov L. N., Isajchev V. I. Struktura i svoystva metallov i splavov. Diffuziya v metallakh i splavakh [Structure and properties of metals and alloys. Diffusion in metals and alloys.]. Kiev, Naukova dumka Publ., 1987, 510 p. (In Russ.).

19. Zvorykin L. O. Osobennosti massoperenosa v metallah i splavah pri prohozhdenii udarnyh voln. Avtoref. dokt. tekh. nauk [Features of the mass transfer in metals and alloys during the passage of shock waves. Doct. Diss.]. Kiev, Institut metallofiziki AN Ukrainy Publ., 1994, 240 p. (In Russ.).

20. Ljakishev N. P. Diagrammy sostoyaniya dvoynykh metallicheskikh system [The diagrams of binary metallic systems]. Moscow, Mashinostroenie Publ., 1996, Vol. 3, 992 p.

21. Markidonov A. V., Starostenkov M. D., Soskov A. A., Poletaev G. M. Molecular dynamics study of structural transformations of cylindrical nanopores in gold under thermal activation conditions and under the action of acoustic and shock waves. Physics of the Solid State. 2015, Vol. 57, No. 8, P. 1551–1554. DOI: 10.1134/S106378341508017X.

22. Meng X., Yanshu F., Xiaoshu Z. Quantitative characterization of morphology of explosive welding interfaces based on fractal theory. Explosion and Shock Waves. 2016, Vol. 36, Iss. 1, P. 50–56. DOI: 10.11883/ 1001-1455(2016)01-0050-07.

23. Greenberg B. A., Ivanov M. A., Inozemtsev A. V., Kuz’min S. V., Lysak V. I., Vlasova A. M., Pushkin M. S. Interface relief upon explosion welding: Splashes and waves. Physics of Metals and Metallography. 2015, Vol. 116, Iss. 4, P. 367–377. DOI: 10.1134/S0031918X15040079.

24. Panin V. E., Panin A. V., Elsukova T. F., Popkova Yu. F. Fundamental Role of Crystal Structure Curvature in Plasticity and Strength of Solids. Phys. Mesomech. 2015, Vol. 18, No. 2, P. 89–99. DOI: 10.1134/S1029959915020010.

25. Abylkalykova R. B., Kveglis L. I., Kalitova A. A., Noskov F. M. Abnormally Fast Migration of Substance at Shock Loadings. Advanced Materials Research. 2014, Vol. 871, P. 231–234. DOI: 10.4028/www.scientific.net/AMR.871.231.


Noskov Fedor Mikhailovich – Cand. Sc., Docent, Docent of Department of Materials and Materials Processing

Technologies, Polytechnic Institute, Siberian Federal University. Е-mail: yesoono@yandex.ru.

Kveglis Lyudmila Iosifovna – Dr. Sc., professor, Siberian Federal University. E-mail: kveglis@list.ru.

Mali Vyacheslav Iosifovich – Cand. Sc., leading researcher, Institute of Hydrodynamics, MA Hydrodynamics SB

RAS. E-mail: mali@hydro.nsc.ru

Leskov Mikhail Borisovich – postgraduate student, Siberian Federal University. E-mail: leskovmb@gmail.com.

Zakharova Elena Valerevna – postgraduate student, Siberian Federal University. E-mail: elena-guryanova@inbox.ru