UDK 681.32
MODELING FAULT TOLERANT ELEMENT FOR AEROSPACE COMPUTER COMPLEXES
S. F. Tyurin
Perm National Research Polytechnic University 29, Komsomol’skiy Av., Perm, 614990, Russian Federation
For aerospace computer systems it is extremely urgent to develop radiation-resistant components. The methods of ensuring the radiation resistance by creating a special architecture – RHBD (Radiation Hardened by Design) include structural triple redundancy (Triple Modular Redundancy, TMR) or majority voting. Triple Module Redundancy Design Techniques with the majority element of the three-state buffers used when creating projects for the programmable logic Xilinx FPGAs Virtex type to reduce radiation-induced switching of logic elements and memory elements. In this electronic circuit parts used in the majority of schemes mentioned sources and documentation of manufacturers were not disclosed. In this regard, the analysis and modeling of such schemes in order to clarify their feature are of great interest. The buffer circuit requires wired “AND’’ using Pullup resistor. Running simulations of majority vote circuit based on the tri-state buffer output in system circuit simulation National Instruments Electronics Workbench Group. However, simulations show that the majority circuit given on the description is not workable. Nevertheless, in the in the datasheet states that in Virtex FPGA is used so-called Virtex Horizontal Bus Logic. Implemented majority function, converted on the basis of the distribution law of the Boolean algebra of logic. The paper proposes a scheme based on a two-stage connection buffers, which corresponds to the logic described in the datasheet. This scheme is consistent with one of the circuit in which two buffers are used at the output of each LUT. A variant of implementation, the appropriate description given in the manufacturer’s documentation, without disclosing detailed circuit design is offered. In the future, it is advisable to consider redundancy within their buffers.
Keywords: FPGA, Triple Module Redundancy, Majority Vote Circuit, 3-State Buffer.
References

1. GOST 27.002–89. Nadezhnost’ v tekhnike Osnovnye ponyatiya. Terminy i opredeleniya. Moscow, Standartinform Publ., 1990, 42 p. (In Russ.).

2. Shubinskij I. B. Nadezhnye otkazoustojchivye informatsionnye sistemy. Metody sinteza [Robust fault-tolerant information systems. Methods of synthesis]. Moscow; Ul’yanovsk, Pech. Dvor Publ., 2016, 544 p. (In Russ.).

3. GOST 18298–79. Stoykost’ apparatury, komplektuyushhikh ehlementov i materialov radiatsionnaya. Terminy i opredeleniya. [Resistance equipment, components and materials radiating elements. Terms and Definitions]. Available at: http://www.internet-law.ru/ gosts/gost/4457/ (accessed 10.1.2017). (In Russ.)

4. Donald C. Mayer, Ronald C. Lacoe. Designing Integrated Circuits to Withstand Space Radiation. Available at: http://www.aero.org/publications/crosslink/ summer2003/06.html (accessed 11.1.2017).

5. Yudintsev V. [Radiation-resistant integrated circuits.]. Elektronika: Nauka, Tekhnologiya, Biznes. Available at: http://www.electronics.ru/files/article_pdf/ 0/article_592_363.pdf (accessed 12.1.2017). (In Russ.).

6. Strogonov A., Cybin S. Programmiruemaya kommutatsiya PLIS: vzglyad iznutri [Programmable switching FPGA: a view from the inside.] Available at: http://www.kit-e.ru/articles/plis/2010_11_56.php (accessed 11.1.2017). (In Russ.)

7. Carl Carmichael. Triple Module Redundancy Design Techniques for Virtex FPGAs. Available at: https://www.xilinx.com/support/documentation/application_notes/xapp197.pdf (accessed 07.12.2016).

8. Xilinx Reduces Risk and Increases Efficiency for IEC61508 and ISO26262 Certified Safety Applications.  WP461 (v1.0) April 9, 2015. Available at: http://www.xilinx.com/support/documentation/white_papers/wp461-functional-safety.pdf (accessed 20.12.2016).

9. QPro Virtex-II 1.5V Platform FPGAs. DS122 (v3.0) April 7, 2014. Available at: http://www.xilinx.com/support/documentation/data_sheets/ds122.pdf (accessed 20.12.2016).

10. Sayt razrabotchika National Instruments [National Instruments Developer Site]. Available at: http://www.ni.com/multisim/ (accessed 22.12.2016).

11. Ulman Dzh. D. Vychislitelnye aspekty SBIS. [Computational Aspects of VLSI]. Moscow, Radio i svyaz Publ., 1990, 480 p. (In Russ.).

12. Nadezhnost i effektivnost v tekhnike: spravochnik [The reliability and efficacy in the technology: manual] Vol. 2. Matematicheskie metody v teorii nadezhnosti i effektivnosti. Ed. B. V. Gnedenko. – Moscow, Mashinostroenie Publ., 1987, 280 p. (In Russ.).

13. Tyurin S. F. [Functionally complete-tolerant FPGA elements for aerospace computer systems]. Vestnik SibGAU. 2016, No. 2, P. 484–489 (In Russ.).

14. Tyurin S. F. [Modeling fault tolerant element for aerospace computer systems]. Vestnik SibGAU. 2016, No. 4, P. 1115–1119 (In Russ.).


Tyurin Sergey Feofentovich – Honored Inventor of the Russian Federation, Dr. Sc., professor, professor of

Department of Automation and Telemechanics, Perm National Research Polytechnic University. E -mail: tyurinsergfeo@yandex.ru.