UDK 681.36:58.362
DEVELOPMENT OF A CONCEPTUAL MODEL OF THE SYSTEM OF DECISION SUPPORT FOR ACCEPTANCE CONTROL OF ONBOARD EQUIPMENT
V. A. Smirnov, D. V. Smirnov
JSC “The Scientific and Production Center “Akvamarin” 7, Tallinskaya Str., Saint-Petersburg, 195196, Russian Federation
The results of development of conceptual model of intelligent decision support system (IDSS) are considered for acceptance control (AC) of onboard automated control system (OACS) of the aircraft. The aim of this work is the formation of the main requirements, principles of construction and development of a conceptual model of IDSS for AC of complex technical objects to ensure timely and accurate assessment of the condition of object of control with a minimum of resource depletion. As research methods we used methods of system analysis, technical control and diagnosis, decision-making and artificial intelligence. At the stage of identification of problem areas its main features have been considered, the problem has been formulated, objectives control requiring information support of decisionmakers (DM) in implementing them have been set. As an index of efficiency of IDSS it offers to use the quantitative index of value of information. The information requirements, which IDSS provides the DM, given the structure of the source data and knowledge used in the development of IDSS, have been formulated. Basic principles over and requirements are brought to development and construction of IDSS. At the stage of conceptualization the intellectual ability of DM and experts in the underlying architecture are described. The formal specification of IDSS and its functions offers, a conceptual model over of the system is brought. The offered approaches to simulation of the functional modules of the knowledge base based on methods of the theory of an artificial intelligence are considered. The proposed model of IDSS, target different intellectual and methodological basis for acceptance control, gives the ability to automate the control process of OACS and make more informed management decisions on its results. In the paper the concept of construction of IDSS has potential for successful application in other enterprises of rocket-space industry to create systems of decision support for a range of applied and research tasks is considered.
Keywords: onboard automated control system, acceptance control, intelligent decision support system, prognostication.
References

1. Smirnov V. A. [Method of evaluating a decision support system from the perspective of its information properties in tasks of controlling complex technical systems]. Morskoy Vestnik. 2016, No. 1S (12), P. 34–37 (In Russ.).

2. Korogodin V. I., Korogodina V. L. Informatsiya kak osnova zhizni [Information as the basis of life]. Dubna, Feniks Publ., 2000, 208 p.

3. Karelin V. P. [Intellectual information technologies and systems for decision support]. Vestnik TIUiE. 2011, No. 2 (14), P. 79–84 (In Russ.).

4. Blinkov E. V., Shishaev A. M., Nazarov V. P. [Use of CALS-technologies in the conditions of development and setting on production of products of the missile and space equipment]. Aktual’nye problemy aviatsii i kosmonavtiki. 2014, Vol. 1, No. 10, P. 42–43 (In Russ.).

5. Varshavskiy P. P., Eremeev A. P. [Search solutions based on structural analogy to intelligent systems of decision support]. Izvestiya RAN. Teoriya i sistemy upravleniya. 2005, No. 1, P. 97–109 (In Russ.).

6. Fefelov A. A. [The use of Bayesian networks to solve the problem of search space and the type of failure of complex engineering systems]. Avtomatika. Avtomatizatsiya. Elektrotekhnicheskie kompleksy i sistemy. 2007, No. 2(20), P. 87–93 (In Russ.).

7. Korablev N. M., Ivashchenko G. S. [A hybrid method of short-term time series forecasting based on the model of clonal selection]. Neyroinformatika: nauchnotekhnicheskaya konferentsiya s mezhdunarodnym uchastiem: sbornik nauchnykh trudov. 2014, Vol. 1, P. 79–89 (In Russ.).

8. Nikolaychuk O. A., Yurin A. Yu. [A prototype of intelligent system for investigation of technical conditions of mechanical systems]. Iskusstvennyy intellekt. 2006, No. 4, P. 459–468 (In Russ.).

9. Nechaev Yu. I., Degtyarev A. B., Siek Yu. L. [Decision making in intelligent real-time systems using the concept of soft computing]. Iskusstvennyy intellect. 2000, No. 3, P. 525–533 (In Russ.).

10. Varshavskiy P. R., Eremeev A. P. [Implementation of methods of search of decisions on the basis of analogies and precedents in systems of support of decision-making]. Vestnik MEI. 2006, No. 2, P. 77–87 (In Russ.).

11. Matyushin M. M., Sarkisyan Kh. V. [The construction of the evaluation function to support operational decisions in the control parameters of the spacecraft state]. Elektronnoe nauchno-tekhnicheskoe izdanie “Nauka i obrazovanie”. 2011, P. 1–15 (In Russ.).
 Available at: http://technomag.neicon.ru/doc/174749.html (accessed 12.11.2016).

12. Lazarson E. V. [Formalization of knowledge and intellectual support of decision-making in problems of selection]. Intellektual’nye sistemy v proizvodstve. 2006, No. 2(8), P. 4–14 (In Russ.).

13. Smirnov V. A. [Malfunction searching in onboard control systems during acceptance control]. Informatsionno-upravlyayushchie sistemy. 2013, No. 2, P. 24–28 (In Russ.).

14. Smirnov V. A. [Precedential approach to model building process troubleshooting for diagnosing complex technical systems]. T-Comm: Telekommunikatsii i transport. 2013, No. 6, P. 73–78 (In Russ.).

15. Larin V. P., Smirnov V. A. [Technique of formation models precedent and case library for decisionmaking in the acceptance inspection of complex technical objects]. Izvestiya GUAP. 2013, No. 4, P. 34–40 (In Russ.).

16. Dasgupta D. Iskusstvennye immunnye sistemy i ikh primenenie [Artificial immune systems and their applications]. Moscow, Fizmatlit Publ., 2006, 344 p.

17. Antukh A. E., Karpenko A. P. [Global optimization based on hybridization methods swarm of particles, the evolution of the mind and clonal selection]. Elektronnoe nauchno-tekhnicheskoe izdanie “Nauka i obrazovanie”. 2012, P. 379–416 (In Russ.). Available at: http://technomag.bmstu.ru/doc/431723.html (accessed 28.11.2016).


Smirnov Dmitrij Vladimirovich – electronic engineer of the 2nd category of new technology department,

JSC “Scientific-production center “Akvamarin”. Е-mail: Smit-90@inbox.ru.

Smirnov Vladimir Aleksandrovich – Cand. Sc., leading engineer-electronic, group leader of future projects of new

technology department, JSC “Scientific-production center “Akvamarin”. Е-mail: vlad.sm2010@yandex.ru.