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THE METHOD OF EQUIVALENT STRENGTH CONDITIONS IN CALCULATING
COMPOSITE STRUCTURES WITH A REGULAR STRUCTURE
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50/44, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
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Plates, beams and shells with non-uniform and micro-inhomogeneities regular structure are
widely used in aviation and rocket and space technology. At the preliminary design stage, it is ini-
tially important to know whether the design safety factor meets the specified strength conditions. To
determine the margin factor, it is necessary to solve the elasticity problem for the designed struc-
ture by the finite element method (FEM), taking into account its inhomogeneous structure, which
requires large computer resources. In this paper, we propose a method of equivalent strength con-
ditions (MESC) for calculating the static strength of elastic structures with a inhomogeneous regu-
lar structure. The proposed method is reduced to the calculation of the strength of isotropic homo-
geneous bodies using equivalent strength conditions. The MESC is based on the following state-

ment. For any composite body V,, there exists such an isotropic homogeneous body VP and such a
number p (equivalence coefficient) that if the body V' stock coefficient satisfies nf)’ the equivalent
strength conditions pn, <n’ < pn,, then the body V, stock coefficient satisfies n, the given
strength conditions n, <ny <n,, and Vice versa, n;, n,— given, the coefficients n_, n,, meet the

exact solutions of elasticity problems constructed for bodies V,, VP The method under considera-

tion is reduced to FEM strength calculation of isotropic homogeneous bodies, which is the easiest
to implement and requires less computer memory than a similar calculation of composite bodies
taking into account their inhomogeneous structure. The procedure for determining the equivalence
coefficients for a number of composite plates, beams and shells of rotation is described. High-
precision multigrid finite elements generating discrete models of small dimension and solutions
with small error are used in the construction of elastic solutions according to FEM for isotropic
homogeneous bodies. The adjusted equivalent strength conditions are of the form

pn,(1+&)<n, < pn,(1—s,), where n, is the body V® reserve coefficient and the values ¢, ¢,

correspond to the approximate solution constructed for the body V. Implementation of FEM for

multigrid discrete models requires several 10°+10° times less computer memory than for basic
models. The calculation of the strength of a beam with a micro-homogeneous regular structure with
the help of MESC is given.
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METO/I SKBUBAJIEHTHBIX YCJIOBUM TIPOYHOCTHU B PACUETAX
KOMITIO3UTHBIX KOHCTPYKIIUH PEI'YJISIPHOM CTPYKTYPBI
C IPUMEHEHUEM MHOT'OCETOYHBIX KOHEYHBIX 9JIEMEHTOB
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Ilnacmumnel, 6anku u 00040YKU C HEOOHOPOOHOU U MUKPOHEOOHOPOOHOU pe2yNsIPHOU
CMPYKMypou WUpOKO NPUMEHAIOMCA 8 ABUAYUOHHOU U paKemHO-Kocmudeckou mexuuxe. Ha smane
ICKU3HO20 NPOEKMUPOBAHUS NEPBOHAUANLHO BANCHO 3HAMb, YO08Iemeopsem Ju Kodppuyuenm
3anaca KOHCMPYKYUU 3a0aHHbIM YCIO08UAM npoyHocmu. /[ onpedenenus kodgguyuenma 3anaca
HE0OX00uMo pewums no Memoody KoHeunwvix anemenmos (MKD) 3adauy ynpyeocmu o0ns
NPOEKMUpyemot KOHCMPYKYUU ¢ y4emom ee HeOOHOPOOHOU CMPYKmypbl, umo mpeodyem O601buux
pecypcos OBM.
B oannoti pabome npeonodicen memoo sxeusaieHmusix ycaoguti npounocmu (MIVII) ona pacuema
HA NPOYHOCMb YNPYeUX KOHCMPYKYULL ¢ HeOOHOPOOHOU pe2yisapHou cmpykmypou. [Ipednacaemvlii
Memoo c800umcsi K pacyemy HA NPOYHOCMb U3OMPONHBIX OOHOPOOHLIX Mel C NpUMeHeHUueM
9KBUBANIEHMHBIX YCaosull npounocmu. B ocnose MOVII nescum caedyrowee ymeepoicoenue. Jns

6cAK020 Komnozumuozo mena \V, cywecmeyem maxoe uzomponHoe 0OHOPOOHOe Meno VP u maxoe
yucno P (xkoaghguyuenm skeusanenmuocmu), umo eciu Kodpguyuenm 3zanaca nf} mena \V°

0
Y0061emeopsaen KEUBANEHMHbIM YCI08UAM npoynocmuy PN, <Ny < PN,, mo koaguyuenm 3anaca

N, mena V, yoosnremeopsem 3a0aHHbIM YCA08UAM npounocmu Ny < Ny < N,, u Haobopom, N;, N, -
3adamvt, Kodpduyuenmor NJ, N, omeeuarom mounvivM peuwenusm 3a0au Ynpy2ocmi, NOCMpPOCHHbIX

ons men V° u Vy. Pacuem na npounocmv no MKO uzomponuwix 00HOpoOHbIX men Haubonee

npocmotl 6 pearuzayuu u mpebyem menvute namsamu IBM, uyem amanoeuunvii pacuem men c
yuemom ux HeoOHOPOOHOU cmpykmypwl. Msznodicena npoyedypa onpeodeieHus Kodghuyuenma
akeuganreHmuocmu P ¢ nomowwro MKD. Ilpu nocmpoenuu pewenuti no MKD 0ns usomponmvix
OOHOPOOHbBIX Mel NPUMEHSAIOMCA MHO20CEemMOUHble KOHeUHble NeMeHmbl, Nopodcoaruue mooeu
MAnou pasmepHoCmu U peulenuss ¢ mManoi nozpeuHocmoto. CKOppeKmupo8anHvle 3KEUBATICHMHbLE
yenosusi npounocmu umerom eud P (l+¢&)<n, < pn,(1-¢,), 20e n, — kosgppuyuenm 3anaca

b
mena V'~ u eemuuumnvt &, &, omeeuaiom npubnudicenHomy peutenutro. Peanusayus MKD ons

. 3 6
MHO20CemounbIX Ouckpemuuvix mooeneu mpedoyem ¢ 10° +10° paz menvue oovema namamu IBM,
yem onsa 6aszoevix. Ilpuseden pacuem Ha npouHocmv OAIKU C MUKPOHEOOHOPOOHOU pe2ylsapHOU
cmpyxkmypotu ¢ nomowvto MIOVII.

Knroueswie cnosa: ynpyeocnib, KOMnNo3umbsl, 9IK6UBAJIEHNMHblE YCIIOBUA NPOUYHOCTU,
MHO20CENIOUHblIE KOHEYHblE JleMerRNnibl, NiIACHUHDI, 6am<u, o0bosouKuU.

Introduction. The calculation of structural strength is one of the most important at the stage of
a schematic design [1], which represents the technical and economic assessment of a design project.
As a rule, structural strength calculation is performed according to margins of safety [1-3]. Accord-



ing to the calculation, for the safety factor n,of the designed structure V,, the specified strength
conditions have the following form
N <ng<n,, (1)
where n,n, are given, n, >1.
At the stage of schematic design, it is primarily important for the designer to know whether the
safety factor n,of the designed structure V, satisfies the specified strength conditions or not (1).

If the safety factor n, satisfies the specified strength conditions, it is considered that the struc-
ture V,, does not fracture under given operational conditions. It should be noted that in this case it is
not necessary to examine in detail the stress-strain state of the structure V,. The calculation of the
strength of the structure V, reduces to finding its safety factor n, and to the strength test (1) for the
factor n,. The safety factor n, is defined according to the formula n, = o7 / o, [1-3], where o7 —
limit stress of the structure V,, (yield stress [3]), o, — maximum equivalent stress of the structure
V,. It should be noted that the safety factor n,corresponds to the exact solution of the elasticity

problem formulated for the structure. If the maximum equivalent structural stresses are determined
approximately, in this case the corrected strength conditions are used [4]. In the analysis of the
stress-strain state of composite structures, the finite element method (FEM) is widely used [5-8].
The basic discrete models of structures with an inhomogeneous and microinhomogeneous structure,
which consist of the first-order finite element (FE) and take into account their structures within the
framework of the microapproach [9], have a very high dimension, which creates difficulties in the
implementation of FEM on a computer. For such models, the multigrid finite element method
(MFEM) [10-12] is effectively used, in which the multigrid finite element is used [13, 14]. It
should be noted that FEM is a special case of multigrid finite element method, and if in solving
boundary value problems in FEM multigrid finite elements are used, in this case, multigrid finite
element method is implemented.

For practice, it is important to know the error of approximate solution that is used in the calcula-
tions. The error of approximate solutions can be estimated when they differ insignificantly from
each other and at the same time form a sequence of solutions that quickly converges to the exact
solution. When constructing such sequences, the splitting of the initial partition of the body area
into FEs is applied. The splitting procedures used for partitions, which are built for a heterogeneous
and microinhomogeneous (fibrous) structure, are complex and difficult to implement. Since the fi-
bers have a small thickness, splitting of such partitions leads to a dramatic increase in the dimen-
sions of discrete models. The implementation of FEM for such models requires large computer re-
sources. In addition, certain restrictions are imposed on the law of splitting, due to the fact that at
each step of splitting the partitions, it is necessary to take into account the microinhomogeneous
structure by microapproach. As known, the splitting procedure used for discrete models of homoge-
neous isotropic bodies is the simplest to implement and requires less computer memory than for the
bodies with an inhomogeneous and micro-inhomogeneous structure (taking into account their struc-
ture).

In this paper, the method of equivalent strength conditions is proposed for the static strength

analysis of a linearly elastic structure V, with a heterogeneous (microinhomogeneous) regular
structure consisting of plastic materials. For simplicity, we believe that the body V,has a fibrous
structure. It is shown that the strength calculation of the composite body V, is reduced to the

strength calculation (using FEM) of the isotropic homogeneous body V°. The bodies V,, VP have

the same shape, size, fastening and loading. The elasticity moduli of the body V® and the fiber co-
incide. In the calculations, adjusted equivalent strength conditions of the form are used.

pny(1+e&)<n, <pn,(1-¢,), (2)



where & =1/(1-6,)-1, ¢, =1-1/(1+5,), p — equivalence number, n,— safety factor of the
body V®, n, =o /6, o, —yield stress of the fiber, o® — maximum equivalent stress of the body
VP (being determined with the help of FEM), o, —error for the stress P, 0< o, <1.

It is shown that if the safety factor n, of the isotropic homogeneous body VP satisfies the ad-
justed equivalent strength conditions (2), the safety factor n, of the composite body V, (corre-

sponding to the exact solution to the elasticity problem) satisfies the given strength conditions (1).
Thus, the implementation of the proposed method is reduced to constructing the adjusted equivalent

strength conditions (2) and finding the safety factor n, of the body VP, i. e., determining the equiv-
alence coefficient p and finding the maximum equivalent stress o for the body V° using FEM
(with the error &,,). The equivalence coefficient p is found using the formula p :aO/O'b, where
o, 1S the maximum equivalent stress of the body V. Stresses o, for the composite body V, and

o for an isotropic homogeneous body are determined by FEM (using multigrid finite elements).
To estimate the error of approximate solutions, sequences of solutions (obtained using FEM) are
used that quickly converge to the accurate ones.

The advantages of the method of equivalent strength conditions are the following. In the calcu-
lations, we use isotropic homogeneous structures that have the same shapes and sizes, fastening and
loading, as composite structures. When analyzing the strain-stress state of isotropic homogeneous
structures according to FEM, multigrid finite elements are used, which allow us to construct se-
quences of solutions that are fast converging to exact ones. It allows to determine the error for the
obtained approximate solutions. Multigrid finite elements for isotropic homogeneous structures
generate discrete models of small dimension and approximate solutions with a small error. The im-

plementation of FEM for multigrid discrete models requires 10° +10° times less computer memory
than for basic ones. When implementing multigrid finite elements, splitting procedures for discrete
models of composite structures are not used. An example of calculating the strength of a beam with
a microinhomogeneous regular fibrous structure using multigrid finite elements is given.
Fundamental principles for the structures. The paper considers three-dimensional structures
(bodies) for which the following conditions are satisfied.
Principle 1. Three-dimensional linearly elastic isotropic homogeneous and composite bodies (struc-
tures) are considered in Cartesian coordinate systems. These structures consist of ductile materials,
have smooth boundaries, static loading, and the same operating conditions. Body loading functions
are smooth functions. The bodies have boundaries that do not degenerate into points. The composite
bodies consist of heterogeneous modules of isotropic homogeneous bodies, the connections be-
tween which are ideal, i.e., at the common boundaries of heterogeneous modules of homogeneous
bodies, the functions of displacements and stresses are continuous. The displacements, defor-
mations, and stresses of the multimodular bodies correspond to the Cauchy relations and the Hooke
law of the three-dimensional linear problem of the theory of elasticity [15]. Equivalent stresses for
elastic bodies are determined by the 4th theory of strength [1].

Equivalent strength conditions and equivalent structural strengths expressed in terms of
safety factors. Let us suppose that two elastic structures V, and V, have the same shape, geometric
dimensions, fastenings, and static loads, but differ in elastic moduli. Let the safety conditions be set
for the safety factors n;, n,of the structures V,, V, respectively

n.<n<n, (3)
n?<n, <n?, (4)
where ni,nZ>1; ni,nZ,ni n2 are given; the factor n, (n,) corresponds to the exact solution of
the elasticity problem posed for the structure V, (V,).
Let us introduce the following definitions for the structures V,, V,.
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Definition 1. If the fulfillment of conditions (4) for the factor n, implies the fulfillment of con-
ditions (3) for the factor n, and vice versa: if the fulfillment of conditions (3) for the factor n, im-
plies the fulfillment of conditions (4) for the factor n,, then the strength conditions (3), (4) will be
called equivalent strength conditions, respectively, for the structures V,, V,.

Definition 2. Let the structures V,, V,, for which the conditions (3), (4) are equivalent strength

conditions respectively, not be destroyed under the same operating conditions. Then we call the
structures V,, V, equivalent in strength.

In practice, the strength equivalence of the structures V,;, V, means that instead of the stressed
structure V,, the structure V, can be used, and vice versa. It should be noted that, of the two struc-

tures equivalent in strength, it is appropriate to use a design that is more technological in manufac-
turing, meets specified technical requirements and requires less financial costs for manufacturing
and operation.
The theorem on the existence of equivalent strength conditions. Let us consider the theorem
that proves the existence of equivalent strength conditions for elastic composite structures (bodies).
Theorem 1. Let a predetermined static surface force gact on the three-dimensional linearly elas-

tic composite body V, (located in a Cartesian coordinate system Oxyz), i.e., forces acting on the
unsecured part of the boundary S, of the body V,, and volume forces p, where g ={qx,qy,qz}T ,

P ={px: Py, pZ}T: dys Ay, G, Pys Py, P, - sSmooth function of the coordinates x, y, z.

At the boundary S, the body V is rigidly fixed, i.e.,at S;: u=v=w=0, S =S, +S;, S; -
smooth boundary of the body V, . The body V, consists of V, components, i.e., plastic, multimodu-
lar isotropic homogeneous bodies V,;, where i =1,...,N, N is the total number of the bodies V; of
the body V,. Let the maximum equivalent stress of the composite body V, arise in the body V,,,
1<a<N. Let the following strength conditions be given for the safety factor n, of the composite
body V, (which corresponds to the exact solution to the elasticity problem for the body V,)

N <ny<n,, (5)
where n,n, are given, n, >1.

In this case we deal with such a three-dimensional elastic isotropic homogeneous body V° and
such numbers n’, n} that if safety factor nt? of the body V® (corresponding to the exact solution to
the elasticity problem for the body) satisfies equivalent strength conditions of the form

n®<nd<nf, (6)
the safety factor n, of the composite body V, satisfies strength conditions (5), and vice versa. If the
safely factor n, of the composite body V, satisfies the conditions (5), the safety factor nt? of the
isotropic homogeneous body V" satisfies the conditions (6), and between the safety factors Ny, nt?
there is a mutual one-to-one association.

Proof. Let a homogeneous isotropic body V° and a composite body V, have the same shape,
dimensions, fastening and loading, but differ in elasticity moduli. Let the elastic moduli of a body
V?® be equal to the elastic moduli of a body V,, of a composite body V,, 1<a < N. We find safety
factors using the formulae [1-3]

Ny = o7 /oy, (7

ne =oy /oy, (8)
where o5 — yield point of the body V, [3]; o, 0'8 — maximum equivalent stresses arising in the
bodies V,, VP respectively and corresponding to the exact solutions to the elasticity problems.

5



Let the safety factor n, satisfy strength conditions (5). Then plugging (7) in (5) we get an in-
equation

n <2 <n,. (9)
O
There is a number p (equivalence number) that
p=oy/op. (10)
Taking into consideration (10) in (9) we have
pn, < U—B < pn,. (12)
Op
Using (8) in (11) we get
pn, <ng < pn,. (12)
There are numbers n°, ny that
ny =pn;, nd=pn,. (13)

Plugging (13) in (12) we get that for the factor n) the conditions are met (6). Thus, there are
such numbers n”, nf that the safety factor n? of the isotropic homogeneous body V° satisfies the
conditions (6). Let the safety factor nt? of the body V" satisfy strength conditions (6). Plugging (8)
in (6) and taking into account (10), (13), we get
Por
O

Whence taking into account (7), the fulfillment of the strength conditions (5) for the safety factor
n, of the composite body V, follows (5). Thus, it is shown that each factor n, e (n/,n}’) corre-
sponds to a single factor n, € (n;,n,) found using the formula (7), and vice versa, a single coeffi-

pn, <

<pn,.

cient ng e (n?,n)) (corresponding to the formula (8)) corresponds to each factor n, € (n;,n,). Let
us consider the limiting cases. Let ng =n . Using relations (8), (13), (10) in the last equality, we
get po; /o, = pn,. Whence, taking into account (7), n, =n, follows. Similarly, we can show that
if ng =nJ, then n, =n,. Let ny=n,. Using (7), (10) in the last equality, we get o /ag =pn,.
Whence, taking into account (8), (13), ng =n follows. Similarly, we can show that if ny=n,,

then nd =nJ . Thus, between the safety factors n, and n_ there is one-to-one relationship. The the-

orem 1 is proved.
Equivalent strength conditions (6) can be represented through the equivalence number p in the

form pn, <n? < pn,, the construction of which is reduced to finding the number p .
It should be noted that the conditions (5), (6) are equivalent strength conditions for bodies V,,

VP (structures), respectively, see the Definition 1. It is believed that if n, satisfies the specified
strength conditions (5), then the structure V,, does not collapse during operation. Let the structure

VP not collapse during operation. Then the structures V,, VPare equivalent in strength (see the
Definition 2).

Thus, the existence of equivalent strength conditions for composite bodies (structures) having
any structure, shape, any size, static loading and fastening that meet the above stated principle 1
and the conditions of the Theorem 1 is proved. It should be noted that for any composite V, it is

generally possible to construct an isotropic homogeneous structure V°, i. e., it is always possible to
set the shape, dimensions, loading, fastening and elastic moduli according to certain rules for the



structure \V°. However, in the general case, equivalent strength conditions for an isotropic homoge-

neous structure \/® can only be constructed for the given forces q, p, which is impractical. This is

due to the fact that the stresses oy, 0'8 and p correspond to the given loading of the structures.

See the formulae (10), (13).
Comment 1. Let the value p and the maximum equivalent stress o of the structure V° be
found. Then, for the structure V, using formula (10), we determine the maximum equivalent stress

0y, 18, oy = pO‘S, and then, using the formula (7), we calculate the safety factorn,, i. e.

n, = o /(pol), that is important to know when designing a structure.

Corrected strength conditions taking into account the error of stresses. In the general
case (e.g., for the bodies having a complex shape) it is very difficult to construct analytical solutions
to the three-dimensional problem of the theory of elasticity. However, using FEM [5-8] and FEM
[10-12], it is possible to construct approximate solutions to the problems of the theory of elasticity
with a given error for stresses. It should be noted that when designing a number of structures (e.g.
structures of minimum weight), the violation of the specified strength conditions (5), i. e., equiva-
lent strength conditions (6), is unacceptable. Equivalent strength conditions (6) do not take into ac-
count the error of approximate solutions, which creates difficulties in their implementation.

Let the following strength conditions be set for the safety factor of the elastic structure V"
nP <nd<nf, (14)
where n, ny are given; ng — safety factor of the structure VV°, corresponding to the exact solution

to the three-dimensional elasticity problem (formulated for this structure).

In the Theorem 2, the corrected strength conditions are formulated taking into account the error
of approximate solutions. For convenience and continuity of presentation, in the Theorem 2 we use
the notation introduced in the Theorem 1.

Theorem 2. Let the strength conditions (14) be given for an elastic structure V°and the maxi-
mum equivalent stress o, be defined corresponding to the approximate solution to the elasticity

problem. Let
An

|6|<6,<C=—, (15)
P nPang
where An=[ny —nf |, nf, n} aregiven; § — relative error for voltage o, , i. €.
0
O, — O
5=—L_", (16)
Ob

where ag is the maximum equivalent stress of the structure V/® corresponding to the exact solution

to the problem of elasticity, stresses ag , oy are determined by the 4th theory of strength, &, is the
estimate for the error & .

Let the structure safety factor n, corresponding to the approximate solution satisfy the adjusted
strength conditions of the form

np
n,<—=2—. (17)
1+,
where n, =oy /o, o7 —Yyield stress.
Then the structure safety factor ng corresponding to the approximate solution satisfies the ad-

justed strength conditions (14), where n{ = oy /op.



Proof. From (16) it follows &, =(1+ &) oy . From here we have
ne = (1+5)n, - (18)
Note that in (15) C, <1. Let &, have the value that &, =[5 |. Then by reason of (15) we have
the following formula

0<6,=|6]<0, <1, (19)
Taking into account (18) in sequence & =—dy, o =y, we introduce the factors
N =1=6p)Ny, Nz =(1+35)N,, (20)
Then by the reason of (18), (20) we get
no=nf or nl=nj. (21)
Let us introduce the factors n{ , n$ according to the formulae
n{ =@1-8,)n,, n§ =(1+5,)n,. (22)
Since 0< 5p <1, n, >0, from (22) it follows
ng >nd. (23)

Let the strength conditions (17) be satisfied for the factor n,, i.e. let
n <@-o,)n,, (1+5,)n, <nJ.
Then for the factors n{ , nd taking into account (23) there are the following inequalities
n’ <nd <nd <nf. (24)
Comparing (20), (22) taking into account (19), there are the following inequalities
d r r d
ng <n;, ny<n,.

It follows from here that taking into account that according to (19) ny <nj, we get

nd <n/ <nj<nd. (25)
Then by reason of (24), (25) there are the following inequalities
nf <n/ <n,<n}. (26)

From (26) taking into account (21) the fulfillment of the specified strength conditions (14) for
the safety factor ng follows. The constraints on the parameter ¢, are found from the assumption of
the existence of strength conditions (17), i. e. let

p p
n_lgn_Z. (27)
1-6, 1l+0,
whence it follows
5,<Cp=—"1 (28)
n’ +n}

Note that as nj >ny >1, then from (28) it follows 0<C, <1. If 5, =C,, then the range for
varying the values of the factor n, equals to zero, i.e., in this case n,=(nf +nJ)/2 what is diffi-
cult to perform in practice at the given n, ny . Thus, at 0, <C, itis possible to perform the given

strength conditions (14) for the factor ng with the application of the adjusted strength conditions
(17) and the approximate solution that generates for the stress o, such an error & that|5[<d, .

The theorem 2 is proved.

Corrected equivalent strength conditions taking into account the error of stresses. In prac-
tice, to solve the problems of the theory of elasticity formulated for three-dimensional composite
structures, numerical methods are used, for example, FEM [10-12], which generate solutions with a



small error. In this regard, it becomes necessary to take into account the error of solutions in equiva-
lent strength conditions. In [16], equivalent strength conditions are considered without taking into
account the error of approximate solutions. Using the results of [4], and based on Theorems 1 and 2,
we formulate the adjusted equivalent strength conditions that take into account the error of the solu-
tions. The adjusted equivalent strength conditions are reflected in the following theorem, which us-
es the notation introduced in Theorems 1, 2.

Theorem 3. Let the equivalent strength conditions of the form be determined for the safety fac-

tor of an elastic isotropic homogeneous structure \V/°
nP <nd<nf, (29)
where n, nJ are given (i. e. the parameter p is defined, see the theorem 1); n{ — the safety factor

of the structureV® corresponding to the exact solution to three-dimensional elasticity problem (for-
mulated for the structure V/®). Let for the structure V° the maximum equivalent stress o, (corre-
sponding to the approximate solution to the elasticity problem) be defined. Let

An
15]<5, <C, = | (30)
n’ +n}
where An=[nf -nf|, & — relative error for the stress oy, i. e. 5=(o,-ov)l oy,

where at‘,’ — maximum equivalent stress of the structure VV° corresponding to the exact solution to
the elasticity problem, &, — the estimate for the error & .
Let the safety factor n, of the structure corresponding to the approximate solution satisfy the
adjusted equivalent strength conditions of the form
n{ <n, < n}
1-6

(31)
p
where n, =oy /o, o7 —Yyield stress.

Then, the safety factor ng of the structure corresponding to the exact solution satisfies the

equivalent strength conditions (29), where nl = o+ /oy
The proof of the Theorem 3 is similar to the proof of the Theorem 2. Note that 6, can be consid-

ered as the maximum error for the maximum equivalent structural stress. The relations (31) can be
represented as
n(+&)<n,<nf(1l-g,),
or taking into account (13) we have
pn(1+ &) <n, < pny(1-&5), (32)
where the values &, ¢, are defined with the help of the error 6, of the stress o}, according to the

formulae

1 1
-1, &=1- ., 0<6,<1, 33
1-5 ST P 3

81:
p +0y

p — equivalence coefficient.
The fundamental principles of the method of equivalent strength conditions. Let us consid-
er a cantilever composite beam V, having a regular structure (which is located in the Cartesian co-

ordinate system Oxyz) with the length L =1536h=600, square section that has dimensions
H xH , where H=128nh=50, fig. 1. The beam V, consists of plastic materials and has static load-

ing g,(x,y,2).
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Fig. 1. The characteristic sizes of the beam V,

Puc. 1. XapakrepHsle pazmepsl 0anku V

The regular cell G, of a composite beam V,, has the dimensions8h x8hx8h in which longitu-
dinal fibers with the cross section hxh are located, fig. 2, the cross sections of the fibers are shad-
ed, 16 fibers. Thus, the beam is reinforced with longitudinal fibers — the section hxh, the distance

between the fibers is h. The fibers are isotropic homogeneous bodies and have the same elastic
moduli.

/' 5y

kaz I
Y
84

9] ) 8h i, x

Fig. 2. Regular cell G,

Puc. 2. Perynspnas siueiika G,

It is believed [17], if the fiber thickness is less than 0.5 mm, then such fibers form a micro-
inhomogeneous structure. Let L=600mm, H =50mmMm, then, h=0,3906 mm, i. e., the beam V,

with the dimensions 5cm x60 cm x5 cm has a microinhomogeneous regular fibrous structure.
For the safety factor n, of the composite beam V,, the conditions of strength of the form (5) are

specified. It is required to determine the safety factor n, of the given beam, i.e., check whether the

beam satisfies the specified strength conditions. To solve this problem, we use the method of equiv-
alent strength conditions, the fundamental principles of which will be considered (for simplicity,
without losing the commonality of views) using an example of the beam V, with a microinhomo-

geneous regular structure. The basic regular partition R, of the beam V,, consists of (basic) single-
grid FE (1gFE) th of the 1st order cube shapes with the side h [8] in which three-dimensional

strain-stress state is realized. The partition R, takes into account the microinhomogeneous struc-

ture of the beam, generates a uniform fine (base) grid with the step h of the dimension
129x1537x129 and a discrete model with a total number of unknown nodal FEMs
N, = 76681728, the width of the ribbon of FEM system of equations (CS) equals b, =50316. The

implementation of FEM for the base model R, (more than 76 million nodal variables) requires
large computer resources. The construction of a sequence of solutions is associated with the appli-
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cation of the grinding procedure for the basic partition, which is complex and difficult to implement
for the composite structure of the beam V,,, since each grinding step leads to a sharp increase in the

dimension of the discrete problem. Note that the step of the basic regular splitting R, of the com-
posite beam V,, cannot be larger than h, since the fiber cross section has the dimensions hxh.

According to MESC, we introduce an isotropic homogeneous beam V® such that the beams
Ve, V, have the same shape, dimensions, specified fastening and loading, but differ in elastic mod-

uli. The elastic moduli of the beam V" are equal to the elastic moduli of the fiber of the beam V.
The implementation of MESC reduces to constructing the adjusted equivalent strength conditions
(32) and to determining safety factor n, of the body V", i. e., to determining the equivalence coef-

ficient p for the beam V, and to determining the maximum equivalent stress o, for the body VP
using FEM with the error &,,. The coefficient p is determined by the formula p=o,/0o}, where

oy, o, are the maximum equivalent stresses of the bodies V,, V°, respectively. Note that finding
the stress o, by FEM (using single-grid FE cube shapes with side h [8]) for the beam V,, taking

into account its microinhomogeneous structure, requires large computer resources.
The following procedure is proposed to find the equivalence coefficient p and stress o, . For

the isotropic homogeneous body V°, we construct a sequence of basic regular partitions (discrete
models) {V}N, consisting of basic 1gFE V j(”) of the first order of the shape of a cube with the side

h, . The discrete model V2 has a dimension n{™ xn{" xn{", where
n" =8n+1, n{” =96n+1, n{" =8n+1, n=1..,N. (34)
The base grid steps on the axis Ox, Oy, Oz are h{®=H/@8n), h{" =L/(96n),
h{" =H /(8n), asL=12H, 10 h, =h{™ =h{" =h{" and h, >h, n=1..,N -1. It should be noted
that at n=N we get hy =h (for the law of splitting (34) at N =16 we have hz=h), i. e. at

n=16 of the dimensions of an isotropic homogeneous discrete model V,3 and basic partition R,
of the composite beam V,, are equal. It is important to note the following. The grinding law for par-

titions is specified so that each partition V. consists of a finite number of areas G of the same
shape and size that the area Gr? and the area of the regular cell (Fig. 2) have the same shape, but
differ in characteristic sizes. For a given grinding law (34), the area Gr? has dimensions

8h, x8h, x8h,. The area G” differs from the area of the regular cell G, (in dimensions
8hx8hx8h, Fig. 2) by the characteristic dimensions of the form h, = g.,h, where g, >1. At
n—16 we have g, > 1,at n=16 weget fs=1

We introduce the area G? whose shape and characteristic dimensions coincide with the area
Grk,’, n=1...,N. In this case, the area Gr? has a composite structure, which apparently coincides

with the structure of a regular cell Gy, i.e., the area G has the same number of fibers (with a
square section in size h, xh,) and the same mutual arrangement as in the cell G, (16 longitudinal

fibers, fig. . 2). The fibers in the areas Gr?, G, have the same moduli of elasticity. The areas Gr?,
Gy, in fact, differ only in scale, that is, it can be formally written G? = 3,G,, where S, is the scale
factor, g, >1, n=1..,N-1. At n=N weget By =1,1.¢e. (eN =G,. For the grinding law (34),
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at n=16 we have S, =1, i.e. G} =G,. Note that the inhomogeneous (fibrous) structure is taken
into account in the area G?.

In the discrete model Vno, we replace all homogeneous isotropic areas Gr? with the composite
areas Gr?. As a result, on the basis of an isotropic homogeneous model Vno, we get a composite
(base) discrete model, which we denote by R,? (in which the inhomogeneous structure is taken into
account). Thus, at n=16 the composite discrete model RY coincides with the basic model R, of

a composite beam V,, i.e., we have R); = R,. The discrete models V., R® have the same shape,
characteristic dimensions, the same fastening and loading, but differ in elasticity moduli. According
to (34), the dimensions of the models Vno, Rr? increase sharply with increasing n. To lower the
dimension of discrete models, multigrid finite elements are effectively applied [10, 11, 13, 14]. Us-
ing m- grid FEs in discrete basic models V2, R? we get m— grid discrete models V., R respec-
tively, which have the same shape, characteristic dimensions, the same fastening and loading like
the beam V,, but they differ in elasticity moduli of the basic models V., RC. The procedure for de-

termining the equivalence coefficient is as follows. For the discrete models V.°, R., we determine

b
n?

respectively the maximum equivalent stresses o, , o, , with the help of which we find the coeffi-

cient p,=o,/c’, n=1..,N. We have p,—>p at n—>N. Let &,=p,—p,,|/p, be a small
value, then we have p = p,. Let the sequence of solutions {o—r?}}il be constructed that quickly con-
verges to an exact solution and let 57 = — &2 , |/ be a small value. Then we consider that o
is a maximum equivalent stress of an isotropic homogeneous body V® (found with the error Op)-
Plugging the obtained p, &, and the given factors n, n, in (32), we determine the adjusted equiv-

alent strength conditions for the composite beam V. The safety factor n, for the body VP is de-

termined by the formula n, = o /oF, where o is the yield strength of the fiber. If the found factor
n, satisfies the obtained adjusted equivalent strength conditions of the form (32), then the safety
factor n, of the composite beam V, (fig. 1) satisfies the specified strength conditions of the form
5).

©) The results of numerical experiments. Let us consider the model problem of calculating the
strength of a cantilever beam V, with a microinhomogeneous fibrous regular structure with the di-
mensions 128h x1536h x128h, h - little, given, Fig. 1. The beam V,, consists of plastic materials,

has a square section with the dimensions H xH , where H =128h. The regular cell of the mi-
croinhomogeneous beam structure V,, with the 8hx8hx8h has 16 identical longitudinal fibers with

a cross section hxh, Fig. 2, i. e. the beam is reinforced with isotropic homogeneous longitudinal
fibers - section hxh, the distance between the fibersis h. At y=0: u=v=w=0, i.e. in the plane

xOz, the beam V, is fastened. For the safety factor n, of the beam V, the strength conditions of
the form are given

13<n,<32. (35)
For the beam V, we use the following basic data:
h=0,3906; o =5; E, =10, E, =1, v, =v, =0,3, g, =0,0018, (36)

where E., E, (v., v,) - Young's modulus (Poisson's ratio) of a binding material and fibers, re-
spectively, o - fiber yield strength, loading g, acts on the surface z=H, 05L<y<L, fig. 1.
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To calculate the beam V,we use the equivalent strength method using multigrid finite elements.

In the calculations, we use homogeneous and composite Lagrangian three-grid FEs (3gFE) having
the shape of a rectangular parallelepiped. We will consider the fundamental principles for construct-

ing 3gFE using the example of a composite 3sFE Vf) having the shape of a rectangular parallele-
piped with the dimensions 8hx16hx8h [10, 15]. 3gFE V0§3) is located in the local Cartesian coor-
dinate system Oxyz, which contains two regular cells G, with the dimensions 8hx8hx8h of the
composite beam V. First, we consider the procedure for constructing a composite Lagrangian two-
grid FE (2sFE) V@ with the dimensions 8hx8hx8h that contains one regular cell G, . In the pro-
cedure we use a uniform fine mesh h, with the step h and the dimensions 9x9x9 the course
mesh H, nested in the fine mesh, H, < h,. Fig. 3 shows a fine mesh h, and a course mesh H,
having 125 nodes, which are marked with dots. The fine mesh h, is generated by the basic R,
29FE V), which consists of 1gFE V" of the 1st order cube shape with the side h (in which three-
dimensional strain-stress state is realized, j=1,..,M, M is the total number of 1gFE, M =512)

and which takes into account the microinhomogeneous structure of 2 gFE Vd(z). The fibers are par-
allel to the axis Oy , the cross sections of the fibers in the plane are shaded, 16 fibers, Fig. 3.
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Fig. 3. Small and large mesh 2gFE V (?
Puc. 3. Menkas u kpynHas cetku 2cKD Vd(z)

The full potential energy P, of the base partition R; 2gFE Vd(z) is presented [5; 8]
512
1

11 =Z(5q§[K?]qj ~q;P;), (37)
j=1

where [K?] — stiffness matrix, P;, q;— the vectors of nodal forces and displacements of 1gFE th

of the base partition 2gFE, T — transposition.
Using Lagrange polynomials [5] on the large mesh H, we define approximating displacement

functions u,,v,,w, for 2gFE V?  which are written in the form

5 5 5 5 5 5 5 5 5

u, :ZzzNijkuijk v Vo :zzzNijkVijk o Wp :ZZZNijkWijk , (38)

i=1 j=lk=1 i=1 j=lk=1 i=1 j=lk=1
where U, Vi, Wi, — displacement values u, v, w in the node i, j,k of the mesh H; i, j,k — coor-
dinates of an integer coordinate system ijk, introduced for the mesh nodes H, (fig. 3);
Nix = Nijw(X,y,2) — base function of the node i,j,k of the mesh H,, i jk=1..5,
Nijk = Li()L;(y)L (2), where
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5 5

— S — —
L= [T -== Lm= [ 22 u@= [ S« (39)

a=la=i i T M a=la=j ¥ j a a=1,a#k Ly —1Z,

Xi, Y, 2, — coordinates of the node i, j,k of the mesh H in the coordination systemr Oxyz, fig. 3.
Let us denote Nﬁ = Nljk’ Uﬁ = Uuk y Vﬂ =Vljk y Wﬁ =lek’ Where i, j,k =1,...,5, ﬁ =1,...,125.
Then the equations (38) take the form

125 125 125
g1 f=1 i

We denote by ¢q ={Uy,..., Uz, Virees Vios, Wy,eo, Wips} NOdal displacement vector of the mesh
Hg, i. e. nodal unknown vector 2gFE V. Using (40), the components of the vector ¢ of the
nodal variables 1gFE th are expressed in terms of the components of the vector q, as a result we
get the equation

q; =[Aflaq, (41)
where [AF] — rectangular matrix, j=1...512.

Substituting (41) into equation (37), from the condition o/7,/06q4 =0 we get [K ]gy =F;,

where
512 512

[Kel=DIATT KA, Ry =Y [AIT P, (42)
j=1

j=1
where [K,] — stiffness matrix (the dimension — 375x375), JFd — nodal force vector (the dimension
—375) 2gFE V?).

Let us consider the construction of the Lagrangian three-grid FE (3gFE) VOE3), using two 2gFE
V{? . The small mesh h, and the large one H, of 3gFE V® are shown in fig. 4, the nodes of the
mesh H_, are marked with dots, 12 nodes. The nodes of the small mesh h, are the nodes of the
large meshes H, of two 2gFE V@, d =1,2.

]‘, a z Yl v F s
P ~ }2;’1 84
L/
's
P AN e6h
Ol N f’,=x
84

Fig. 4. Small h,and large H_, mesh 3gFE V®
Puc. 4. Menxas h, u xpymnas H, cerkn 3cKD VDE3)

The full potential energy P, 3gFE V,f‘) can be presented in the form

2
1
Pa :Z(Eq;[Kd]qd _q-(Ii—Fd)! (43)
d=1

where [K ], Fy, 04 — stiffness matrix, vectors of nodal forces and displacements 2gFE
vi® d=12.
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Using Lagrange polynomials on the large mesh H_, we determine the approximating functions
of displacements us,v,, W, for 3gFE V), that are written in the form

2 3 2 2 3 2 2 3 2
Ug=> > > Niglijer V=22 > Ny, Wy=2 > > Ny, , (44)

i=1 j=1k=1 i=1 j=1k=1 i=1 j=1k=1

where Ujy, Vije, Wi — displacement values of u, v, w in the node i, j,k of the mesh H; i, j,k —

coordinates of an integer coordinate system ijk, introduced for the mesh H, (fig. 4);
Nix = Nix (X,y,2) — base function of the node i, j,k of the mesh H,, ik=12, j=123,
2 2

_ 3 _ _
L= J] ==, L,(n= [] 2=, L@= [] ==, (45)

Ly — 2,

a=la=i N o a=la#j Yj~ Ya a=la#k
Xi,Yj,Z, —node coordinates i, j,k of the mesh H, in the coordinate system Oxyz, fig. 4.
let us denoteN; =Ny, Us=Uy, Vs =V, Wy =Wy, where i,k=12, j=123,
£ =1...12. Then the equations (44) take the form
12 12 12
Up= Ny, Va=) Ngvy, Wy=) Nyw,. (46)
B=1 B=1 B=1
We denote by g, ={Uy,...,Ujp, Vy,..oVip, Wy,..., Wy} the vector of nodal displacements of the
large mesh H_, i.e., the vector of nodal variables 3gFE V¥ . Using (46), the vector components
g4 of nodal variables 2gFE Vd(z) are expressed by the vector components q,,, as a result we get
dg =[A{]d,. (47)
where [A3] - rectangular matrix, d =1,2.
Substituting (47) into the expression (43), from the condition oP,/oq, =0 we get
[K,1a, =F,, where

[Ka]=d§[A§’]T[Kd][A§], F =d§[A§]T Fo (48)
where [K_,] — stiffness matrix (theldimension-36><36), F, 1 nodal force vector (the dimension —
36) 3gFE V..

Comment 2. The solution built for the large mesh H_, 3gFE VS), using the formula (47) is pro-
jected onto the small mesh h, 3gFE Vf). Then, using the formula (41), we determine the nodal
displacements of the basic partitions 2gFE Vd(z) , Which makes it possible to calculate stresses in any
1gFE V" of base partition Ry 2gFE V{?, d =1,2.

Comment 3. By virtue of (41), the dimension of the vector g, (i.e. the dimension of 2gFE
Vd(z)) does not depend on the total number M of 1gFE V", i.e. on the dimension of the partition
R4 . Therefore, to take into account the microinhomogeneous structure in 2gFE, one can use arbi-
trarily small basic partitions consisting of 1gFE th. In this case in 2gFE Vd(z) (consequently, in

3gFE VS)) the three-dimensional strain-stress state is described arbitrarily accurately (without in-
troducing additional simplifying hypotheses).

Using the procedures described in [14], 2gFE are designed to calculate composite shells of
revolution, rings of complex shape and shafts that have central circular holes, composite and uni-
form cylindrical shells, plates and beams of complex shape, which are widely used in practice. The
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procedure for constructing homogeneous multigrid finite elements is similar to the procedure for
constructing composite multigrid finite elements.

For the composite beam V, we define an isotropic homogeneous body VP (the beam V). The

bodies V,, VP have the same shape, size, fastening and loading, the elastic moduli of the body V°
are equal to the elastic moduli of the fiber. Using the law of splitting (34), we construct, according
to the procedure described above, three-mesh discrete models V., R, consisting respectively of

isotropic homogeneous and composite 3gFE of the type VS) with the dimensions 8h, x16h, x8h,,

b

b o where

n=1,12. For the discrete isotropic homogeneous model an we find the solutions w
w2, of - maximum displacement and equivalent voltage of the discrete model V", n=1,...12.

n n:?
Equivalent stresses are determined by the 4th theory of strength. The calculation results are present-
ed in Table 1. The analysis of the calculation results shows a fast uniformly monotonic convergence

of approximate solutions (w°, o) to the exact solution. The stresses o, = 0,665, o}, = 0,686, dif-

fer by 6 =3,061%. The test calculations show that in this case the stress o, is found with the er-

ror 10%--15%. Let 5, =0,15. The condition (30) for &, is satisfied. Taking into account relations
(13) and (35) in (30), we have &6,=015<C,=0,42. According to (33) at 6,=015 we get

& =0176, &, =0131. The adjusted equivalent strength conditions (32) for g =0176, ¢, =0,131
have the form
1176 pn, <n, <0,869pn,, (49)

where n, - safety factor of the body VP, determined by FEM.

Tabnuya 1

The results of calculations of the beam V"

Pe3ynbratel pacyeToB Ganku VP

b b b b b b
V W, o, |V, W, loge

V> | 204,851 | 0377 | V> | 238,033 | 0,569
V, | 228503 | 0489 | Vg | 238,263 | 0,595
V) | 234,023 | 0524 | V | 238422 | 0,620

V; | 236,100 | 0537 | V5 | 238545 | 0,643

VP | 237,119 | 0543 | V2 | 238,630 | 0,665

V¢ | 237,683 | 0547 | V5 | 238,697 | 0,686

Note that the three-grid discrete model V., consisting of Lagrangian 3gFE of the type Vf)

(a=1...,32768) with the dimension 8h,, x16h,, x8h,,, has N, =73008 of nodal variables of
FEM, the width of the tape the control system of FEM is b, =1059. The implementation of FEM
Noxb, 76681728 x50316

for the discrete model V, requires k = . = =49903,566 times less com-
N, x by, 73008 x1059

puter memory than for the base model R, of the beam V,, which shows the high efficiency of the

application of Lagrangian 3gFE of the type Vof3) in the calculations. The equivalence coefficient p
for the composite beam V,, is determined using the procedure described above. The discrete models
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VP, R,, n=9,11,12 are constructed using 3gFE of the type V® based on basic regular partitions,
respectively, with the dimensions: 73x865x73, 89x1057x89 u 97x1153x97. The equivalence

coefficients p, are found by the formula p, =o,/c?, where o,, of — maximum equivalent

stresses of the models R, an, n=29,11,12 respectively. As a result of the calculations, we get:
Py =3,002, p,;;=3000, p,, =2,999. The relative errors for the found coefficients py, p;;, Py
are
0,(%) =100%x| p;; — Pg |/ p;; =100%x | 3,002 — 3,000 /3,000 = 0,066% ,
0, (%) =100%x | P,, — Py1 |/ P, =100%x | 3,000 —2,999 /2,999 = 0,033%.
As pg > p;; > Py, and o, is the smallest value, then we assume that the equivalence coefficient
IS p=p;,=2999. Plugging into (49) p=2,999, n, =13, n, =3,2, we get
4584 <n,<8339. (50)
The safety factor of the homogeneous body V® is n, = o, /oy, =5/0,686 = 7,288, which satis-
fies the adjusted equivalent strength conditions (50). This means that the safety factor n, of the
composite beam V,, satisfies the specified strength conditions (35).
Let us perform verification calculations. Based on the underlying partition R, of the beam V,

using 3gFE Vf) we build three-grid discrete models: composite R;; and isotropic homogeneous
Rlb6 corresponding to the law of splitting (34) at n=16. We consider that the stresses o, = 2,279,

of; =0,762 correspond to exact solutions, i.e. o, =04, o, = oy5. Then the safety factor for the
composite body V, is ny =0y /o, =5/2,279=2194, i.e. n, =2194 satisfies given strength condi-
tions (35), which confirms a similar conclusion obtained using MESC.

The equivalence coefficient p, (corresponding to the exact solutions) for the beam V, is
Py =0,/0,=2,279/0,762=2,990. It should be noted that the coefficients p=2,999 and

Po = 2,990 differ by 0,301 %, i.e. as a matter of fact, you can take p,=p .

The dimension of the base discrete model V,} (whose mesh at n=12 has the dimension

97 x1153x 97, see formulae (34)) equals 32517504, the width of the tape of the control system of

FEM is 28524. The number of nodal variables of FEM of the three-grid discrete model V5 equals
73008, the width of the tape of the control system of FEM is 1059. The implementation of FEM for

a homogeneous isotropic three-grid discrete model V5 requires
32517504 x 28524

> 73008x1059
consisting of the known 1gFE of the cube shape with the side h,,.

Conclusion. The method of equivalent strength conditions is proposed for calculating the static
strength of structures (plates, beams, shells) with an inhomogeneous, microinhomogeneous regular
structure under specified strength conditions. The implementation of the method is reduced to cal-
culating the strength of isotropic homogeneous bodies with the use of equivalent strength conditions
built on the basis of given ones. When calculating homogeneous bodies according to FEM, multi-
grid finite elements are used, which generate discrete models of small dimension and solutions with
a small error. The implementation of the proposed method requires small computer resources.

=11996,685 times less computer memory than for the base model V.3,
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