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 Plates, beams and shells with non-uniform and micro-inhomogeneities regular structure are 

widely used in aviation and rocket and space technology. At the preliminary design stage, it is ini-

tially important to know whether the design safety factor meets the specified strength conditions. To 

determine the margin factor, it is necessary to solve the elasticity problem for the designed struc-

ture by the finite element method (FEM), taking into account its inhomogeneous structure, which 

requires large computer resources. In this paper, we propose a method of equivalent strength con-

ditions (MESC) for calculating the static strength of elastic structures with a inhomogeneous regu-

lar structure. The proposed method is reduced to the calculation of the strength of isotropic homo-

geneous bodies using equivalent strength conditions. The MESC is based on the following state-

ment. For any composite body 0V , there exists such an isotropic homogeneous body bV  and such a 

number p  (equivalence coefficient) that if the body bV  stock coefficient satisfies 0
bn  the equivalent 

strength conditions 2
0

1 pnnpn b  , then the body 0V  stock coefficient satisfies 0n  the given 

strength conditions 201 nnn  , and Vice versa,  1n , 2n – given, the coefficients 0
bn , 0n , meet the 

exact solutions of elasticity problems constructed for bodies 0V , bV . The method under considera-

tion is reduced to FEM strength calculation of isotropic homogeneous bodies, which is the easiest 

to implement and requires less computer memory than a similar calculation of composite bodies 

taking into account their inhomogeneous structure. The procedure for determining the equivalence 

coefficients for a number of composite plates, beams and shells of rotation is described. High-

precision multigrid finite elements generating discrete models of small dimension and solutions 

with small error are used in the construction of elastic solutions according to FEM for isotropic 

homogeneous bodies. The adjusted equivalent strength conditions are of the form 

)1()1( 2211   pnnpn b , where bn  is the body bV  reserve coefficient and the values 1 , 2  

correspond to the approximate solution constructed for the body bV . Implementation of FEM for 

multigrid discrete models requires several 63 1010   times less computer memory than for basic 

models. The calculation of the strength of a beam with a micro-homogeneous regular structure with 

the help of MESC is given.  
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 Пластины, балки и оболочки с неоднородной и микронеоднородной регулярной 

структурой широко применяются в авиационной и ракетно-космической технике. На этапе 

эскизного проектирования первоначально важно знать, удовлетворяет ли коэффициент 

запаса конструкции заданным условиям прочности. Для определения коэффициента запаса 

необходимо решить по методу конечных элементов (МКЭ) задачу упругости для 

проектируемой конструкции с учетом ее неоднородной структуры, что требует больших 

ресурсов ЭВМ.  

В данной работе предложен метод эквивалентных условий прочности (МЭУП) для расчета 

на прочность упругих конструкций с неоднородной регулярной структурой. Предлагаемый 

метод сводится к расчету на прочность изотропных однородных тел с применением 

эквивалентных условий прочности. В основе МЭУП лежит следующее утверждение. Для 

всякого композитного тела 0V  существует такое изотропное однородное тело bV  и такое 

число p  (коэффициент эквивалентности), что если коэффициент запаса 0
bn  тела bV  

удовлетворяет эквивалентным условиям прочности 2
0

1 pnnpn b  , то коэффициент запаса 

0n  тела 0V  удовлетворяет заданным условиям прочности 201 nnn  , и наоборот, 1n , 2n  - 

заданы, коэффициенты 0
bn , 0n  отвечают точным решениям задач упругости, построенных 

для тел bV  и 0V . Расчет на прочность по МКЭ изотропных однородных тел наиболее 

простой в реализации и требует меньше памяти ЭВМ, чем аналогичный расчет тел с 

учетом их неоднородной структуры. Изложена процедура определения коэффициента 

эквивалентности p  с помощью МКЭ. При построении решений по МКЭ для изотропных 

однородных тел применяются многосеточные конечные элементы, порождающие модели 

малой размерности и решения с малой погрешностью. Скорректированные эквивалентные 

условия прочности имеют вид )1()1( 2211   pnnpn b , где bn  – коэффициент запаса 

тела bV  и величины 1 , 2  отвечают приближенному решению. Реализация МКЭ для 

многосеточных дискретных моделей требует в 63 1010   раз меньше объема памяти ЭВМ, 

чем для базовых. Приведен расчет на прочность балки с микронеоднородной регулярной 

структурой с помощью МЭУП. 

 

 Ключевые слова: упругость, композиты, эквивалентные условия прочности, 

многосеточные конечные элементы, пластины, балки, оболочки. 

 

 Introduction. The calculation of structural strength is one of the most important at the stage of 

a schematic design [1], which represents the technical and economic assessment of a design project. 

As a rule, structural strength calculation is performed according to margins of safety [1-3]. Accord-
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ing to the calculation, for the safety factor 0n of the designed structure 0V , the specified strength 

conditions have the following form 

                                                                               201 nnn  ,                                                       (1) 

where 21,nn  are given, 11 n .  

 At the stage of schematic design, it is primarily important for the designer to know whether the 

safety factor 0n of the designed structure 0V  satisfies the specified strength conditions or not (1).  

 If the safety factor 0n  satisfies the specified strength conditions, it is considered that the struc-

ture 0V  does not fracture under given operational conditions. It should be noted that in this case it is 

not necessary to examine in detail the stress-strain state of the structure 0V . The calculation of the 

strength of the structure 0V  reduces to finding its safety factor 0n  and to the strength test (1) for the 

factor 0n . The safety factor 0n  is defined according to the formula 00 /Tn   [1–3], where T  – 

limit stress of the structure 0V  (yield stress [3]), 0  – maximum equivalent stress of the structure 

0V . It should be noted that the safety factor 0n corresponds to the exact solution of the elasticity 

problem formulated for the structure. If the maximum equivalent structural stresses are determined 

approximately, in this case the corrected strength conditions are used [4]. In the analysis of the 

stress-strain state of composite structures, the finite element method (FEM) is widely used [5-8]. 

The basic discrete models of structures with an inhomogeneous and microinhomogeneous structure, 

which consist of the first-order finite element (FE) and take into account their structures within the 

framework of the microapproach [9], have a very high dimension, which creates difficulties in the 

implementation of FEM on a computer. For such models, the multigrid finite element method 

(MFEM) [10–12] is effectively used, in which the multigrid finite element is used [13, 14]. It 

should be noted that FEM is a special case of multigrid finite element method, and if in solving 

boundary value problems in FEM multigrid finite elements are used, in this case, multigrid finite 

element method is implemented.  

 For practice, it is important to know the error of approximate solution that is used in the calcula-

tions. The error of approximate solutions can be estimated when they differ insignificantly from 

each other and at the same time form a sequence of solutions that quickly converges to the exact 

solution. When constructing such sequences, the splitting of the initial partition of the body area 

into FEs is applied. The splitting procedures used for partitions, which are built for a heterogeneous 

and microinhomogeneous (fibrous) structure, are complex and difficult to implement. Since the fi-

bers have a small thickness, splitting of such partitions leads to a dramatic increase in the dimen-

sions of discrete models. The implementation of FEM for such models requires large computer re-

sources. In addition, certain restrictions are imposed on the law of splitting, due to the fact that at 

each step of splitting the partitions, it is necessary to take into account the microinhomogeneous 

structure by microapproach. As known, the splitting procedure used for discrete models of homoge-

neous isotropic bodies is the simplest to implement and requires less computer memory than for the 

bodies with an inhomogeneous and micro-inhomogeneous structure (taking into account their struc-

ture). 

 In this paper, the method of equivalent strength conditions is proposed for the static strength 

analysis of a linearly elastic structure 0V  with a heterogeneous (microinhomogeneous) regular 

structure consisting of plastic materials. For simplicity, we believe that the body 0V has a fibrous 

structure. It is shown that the strength calculation of the composite body 0V  is reduced to the 

strength calculation (using FEM) of the isotropic homogeneous body bV . The bodies 0V , bV  have 

the same shape, size, fastening and loading. The elasticity moduli of the body bV  and the fiber co-

incide. In the calculations, adjusted equivalent strength conditions of the form are used. 

                                                           )1()1( 2211   pnnpn b ,                                               (2)  
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where 1)1/(11  p , )1/(112 p  , p  – equivalence number, bn – safety factor of the 

body bV , b
Tbn  / , T  – yield stress of the fiber, b  – maximum equivalent stress of the body 

bV  (being determined with the help of FEM), p  – error for the stress b , 10  p .  

 It is shown that if the safety factor bn  of the isotropic homogeneous body bV  satisfies the ad-

justed equivalent strength conditions (2), the safety factor 0n  of the composite body 0V  (corre-

sponding to the exact solution to the elasticity problem) satisfies the given strength conditions (1). 

Thus, the implementation of the proposed method is reduced to constructing the adjusted equivalent 

strength conditions (2) and finding the safety factor bn  of the body bV , i. e., determining the equiv-

alence coefficient p  and finding the maximum equivalent stress b  for the body bV  using FEM 

(with the error p ). The equivalence coefficient p  is found using the formula bp  /0 , where 

0  is the maximum equivalent stress of the body 0V . Stresses 0  for the composite body 0V  and 

b  for an isotropic homogeneous body are determined by FEM (using multigrid finite elements). 

To estimate the error of approximate solutions, sequences of solutions (obtained using FEM) are 

used that quickly converge to the accurate ones. 

 The advantages of the method of equivalent strength conditions are the following. In the calcu-

lations, we use isotropic homogeneous structures that have the same shapes and sizes, fastening and 

loading, as composite structures. When analyzing the strain-stress state of isotropic homogeneous 

structures according to FEM, multigrid finite elements are used, which allow us to construct se-

quences of solutions that are fast converging to exact ones. It allows to determine the error for the 

obtained approximate solutions. Multigrid finite elements for isotropic homogeneous structures 

generate discrete models of small dimension and approximate solutions with a small error. The im-

plementation of FEM for multigrid discrete models requires 63 1010   times less computer memory 

than for basic ones. When implementing multigrid finite elements, splitting procedures for discrete 

models of composite structures are not used. An example of calculating the strength of a beam with 

a microinhomogeneous regular fibrous structure using multigrid finite elements is given. 

 Fundamental principles for the structures. The paper considers three-dimensional structures 

(bodies) for which the following conditions are satisfied. 

Principle 1. Three-dimensional linearly elastic isotropic homogeneous and composite bodies (struc-

tures) are considered in Cartesian coordinate systems. These structures consist of ductile materials, 

have smooth boundaries, static loading, and the same operating conditions. Body loading functions 

are smooth functions. The bodies have boundaries that do not degenerate into points. The composite 

bodies consist of heterogeneous modules of isotropic homogeneous bodies, the connections be-

tween which are ideal, i.e., at the common boundaries of heterogeneous modules of homogeneous 

bodies, the functions of displacements and stresses are continuous. The displacements, defor-

mations, and stresses of the multimodular bodies correspond to the Cauchy relations and the Hooke 

law of the three-dimensional linear problem of the theory of elasticity [15]. Equivalent stresses for 

elastic bodies are determined by the 4th theory of strength [1]. 

 Equivalent strength conditions and equivalent structural strengths expressed in terms of 

safety factors. Let us suppose that two elastic structures 1V  and 2V  have the same shape, geometric 

dimensions, fastenings, and static loads, but differ in elastic moduli. Let the safety conditions be set 

for the safety factors 1n , 2n of the structures 1V , 2V  respectively 

                                                                         1
1

1
ba nnn  ,                                                             (3) 

                                                                         2
2

2
ba nnn  ,                                                            (4) 

where 1, 21 aa nn ;  21 , aa nn , 21 , bb nn  are given; the factor 1n  ( 2n )  corresponds to the exact solution of 

the elasticity problem posed for the structure 1V  ( 2V ).  

 Let us introduce the following definitions for the structures 1V , 2V . 
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 Definition 1. If the fulfillment of conditions (4) for the factor 2n   implies the fulfillment of con-

ditions (3) for the factor 
1n  and vice versa: if the fulfillment of conditions (3) for the factor 1n  im-

plies the fulfillment of conditions (4) for the factor 2n , then the strength conditions (3), (4) will be 

called equivalent strength conditions, respectively, for the structures 1V , 2V .    

 Definition 2. Let the structures 1V , 2V , for which the conditions (3), (4) are equivalent strength 

conditions respectively, not be destroyed under the same operating conditions. Then we call the 

structures 1V , 2V  equivalent in strength. 

 In practice, the strength equivalence of the structures 1V , 2V   means that instead of the stressed 

structure 1V , the structure 2V  can be used, and vice versa. It should be noted that, of the two struc-

tures equivalent in strength, it is appropriate to use a design that is more technological in manufac-

turing, meets specified technical requirements and requires less financial costs for manufacturing 

and operation. 

 The theorem on the existence of equivalent strength conditions. Let us consider the theorem 

that proves the existence of equivalent strength conditions for elastic composite structures (bodies). 

 Theorem 1. Let a predetermined static surface force q act on the three-dimensional linearly elas-

tic composite body 0V  (located in a Cartesian coordinate system Oxyz ), i.e., forces acting on the 

unsecured part of the boundary qS of the body 0V  and volume forces p , where 
T

zyx qqq },,{q , 

T
zyx ppp },,{p : xq , yq , zq , xp , yp , zp  - smooth function of the coordinates x , y , z .  

At the boundary uS , the body 0V  is rigidly fixed, i.e., at uS : 0 wvu , qu SSS 0 , 0S  - 

smooth boundary of the body 0V . The body 0V  consists of  iV  components, i.e., plastic, multimodu-

lar isotropic homogeneous bodies iV , where Ni ,...,1 , N  is the total number of the bodies iV  of 

the body 0V . Let the maximum equivalent stress of the composite body 0V  arise in the body V , 

N1 . Let the following strength conditions be given for the safety factor 0n  of the composite 

body 0V  (which corresponds to the exact solution to the elasticity problem for the body 0V ) 

                                                                          201 nnn  ,                                                             (5) 

where  21,nn  are given, 11 n . 

 In this case we deal with such a three-dimensional elastic isotropic homogeneous body bV  and 

such numbers pn1 , pn2  that if safety factor 0
bn  of the body bV (corresponding to the exact solution to 

the elasticity problem for the body) satisfies equivalent strength conditions of the form 

                                                                         p
b

p nnn 2
0

1  ,                                                            (6) 

the safety factor 0n  of the composite body 0V  satisfies strength conditions (5), and vice versa. If the 

safely factor 0n  of the composite body 0V  satisfies the conditions (5), the safety factor 0
bn  of the 

isotropic homogeneous body bV  satisfies the conditions (6), and between the safety factors 0n , 0
bn  

there is a mutual one-to-one association.  

 Proof. Let a homogeneous isotropic body bV  and a composite body 0V  have the same shape, 

dimensions, fastening and loading, but differ in elasticity moduli. Let the elastic moduli of a body 
bV  be equal to the elastic moduli of a body V  of a composite body 0V , N1 . We find safety 

factors using the formulae [1–3] 

                                                                      00 /Tn  ,                                                                (7) 

                                                                      00 / bTbn  ,                                                                (8) 

where T – yield point of the body V  [3]; 0 , 0
b  – maximum equivalent stresses arising in the 

bodies 0V , bV  respectively and corresponding to the exact solutions to  the elasticity problems. 
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   Let the safety factor 0n  satisfy strength conditions (5). Then  plugging (7) in (5) we get an in-

equation 

                                                                        2

0

1 nn T 



.                                                            (9) 

 There is a number p  (equivalence number) that 

                                                                        0
0 / bp  .                                                              (10) 

 Taking into consideration (10) in (9) we have  

                                                                     201 pnpn
b

T 



.                                                         (11) 

 Using  (8) in (11) we get  

                                                                      2
0

1 pnnpn b  .                                                          (12) 

 There are numbers pn1 , pn2  that   

                                                                 11 pnn p  ,  22 pnn p  .                                                     (13) 

 Plugging (13) in (12) we get that for the factor 0
bn  the conditions are met (6). Thus, there are 

such numbers pn1 , pn2  that the safety factor 0
bn  of the isotropic homogeneous body bV satisfies the 

conditions (6). Let the safety factor 0
bn  of the body bV  satisfy strength conditions (6). Plugging (8) 

in (6) and taking into account (10), (13), we get 

                                                                   2

0

1 pn
p

pn T 



.                                           

 Whence taking into account (7), the fulfillment of the strength conditions (5) for the safety factor 

0n  of the composite body 0V  follows (5). Thus, it is shown that each factor ),( 21
pp

b nnn  corre-

sponds to a single factor ),( 210 nnn   found using the formula (7), and vice versa, a single coeffi-

cient ),( 21
0 pp
b nnn   (corresponding to the formula (8)) corresponds to each factor ),( 210 nnn  . Let 

us consider the limiting cases. Let p
b nn 1
0  . Using relations (8), (13), (10) in the last equality, we 

get 10/ pnp T  . Whence, taking into account (7), 10 nn   follows. Similarly, we can show that 

if p
b nn 2
0  , then 20 nn  . Let 10 nn  . Using (7), (10) in the last equality, we get 1

0/ pnbT  . 

Whence, taking into account (8), (13), p
b nn 1
0   follows. Similarly, we can show that if 20 nn  , 

then p
b nn 2
0  . Thus, between the safety factors 0n  and 0

bn  there is one-to-one relationship. The the-

orem 1 is proved. 

 Equivalent strength conditions (6) can be represented through the equivalence number p  in the 

form 2
0

1 pnnpn b  , the construction of which is reduced to finding the number p . 

 It should be noted that the conditions (5), (6) are equivalent strength conditions for bodies  0V , 

bV  (structures), respectively, see the Definition 1. It is believed that if 0n  satisfies the specified 

strength conditions (5), then the structure 0V  does not collapse during operation. Let the structure 

bV  not collapse during operation. Then the structures 0V , bV are equivalent in strength (see the 

Definition 2). 

 Thus, the existence of equivalent strength conditions for composite bodies (structures) having 

any structure, shape, any size, static loading and fastening that meet the above stated principle 1  

and the conditions of the Theorem 1 is proved. It should be noted that for any composite 0V  it is 

generally possible to construct an isotropic homogeneous structure bV , i. e., it is always possible to 

set the shape, dimensions, loading, fastening and elastic moduli according to certain rules for the 
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structure bV . However, in the general case, equivalent strength conditions for an isotropic homoge-

neous structure bV  can only be constructed for the given forces q , p , which is impractical. This is 

due to the fact that the stresses 0 , 0
b  and p  correspond to the given loading of the structures. 

See the formulae (10), (13). 

 Comment 1. Let the value p  and the maximum equivalent stress 0
b  of the structure bV  be 

found. Then, for the structure 0V  using formula (10), we determine the maximum equivalent stress 

0 , i.e., 0
0 bp  , and then, using the formula (7), we calculate the safety factor 0n , i. e. 

)/( 0
0 bT pn  , that is important to know when designing a structure. 

  Corrected strength conditions taking into account the error of stresses. In the general 

case (e.g., for the bodies having a complex shape) it is very difficult to construct analytical solutions 

to the three-dimensional problem of the theory of elasticity. However, using FEM [5–8] and FEM 

[10–12], it is possible to construct approximate solutions to the problems of the theory of elasticity 

with a given error for stresses. It should be noted that when designing a number of structures (e.g. 

structures of minimum weight), the violation of the specified strength conditions (5), i. e., equiva-

lent strength conditions (6), is unacceptable. Equivalent strength conditions (6) do not take into ac-

count the error of approximate solutions, which creates difficulties in their implementation. 

 Let the following strength conditions be set for the safety factor of the elastic structure bV  

                                                                          p
b

p nnn 2
0

1  ,                                                         (14) 

where pn1 , pn2  are given; 0
bn  – safety factor of the structure bV , corresponding to the exact solution 

to the three-dimensional elasticity problem (formulated for this structure). 

 In the Theorem 2, the corrected strength conditions are formulated taking into account the error 

of approximate solutions. For convenience and continuity of presentation, in the Theorem 2 we use 

the notation introduced in the Theorem 1. 

Theorem 2. Let the strength conditions (14) be given for an elastic structure bV and the maxi-

mum equivalent stress b be defined  corresponding to the approximate solution to the elasticity 

problem. Let 

pppp
nn

n
C

21

 ||



 ,                                                             (15) 

 

where || 12
pp nnn  , pn1 , 

pn2   are given;   – relative error for voltage b , i. e. 

                                         
0

0

b

bb







 ,                                                                     (16) 

where  0
b is the maximum equivalent stress of the structure bV  corresponding to the exact solution 

to the problem of elasticity, stresses 0
b , b are determined by the 4th theory of strength, p  is the 

estimate for the error  . 

 Let the structure safety factor bn  corresponding to the approximate solution satisfy the adjusted 

strength conditions of the form 

                                                                     
p

p

b

p

p n
n

n

 


 11

21 .                                                   (17) 

where bTbn  / ,  T  – yield stress. 

 Then the structure safety factor 0
bn  corresponding to the approximate solution satisfies the ad-

justed strength conditions (14), where 00 / bTbn  . 
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Proof.  From (16) it follows 0 )1( bb   . From here we have 

                                                                           bb nn )1(0  .                                                      (18) 

 Note that in (15) 1pC . Let 0  have the value that || 0   . Then by reason of (15) we have 

the following formula  

                                                                       1 || 0 0  p .                                                (19) 

 Taking into account (18) in sequence 0  , 0  , we introduce the factors 

                                                               b
r nn )1( 01  ,   b

r nn )1( 02  ,                                     (20) 

 Then by the reason of (18), (20) we get  

                                                                   r
b nn 1
0     or   r

b nn 2
0  .                                                   (21) 

 Let us introduce the factors dn1 , dn2  according to the formulae 

                                                          bp
d nn )1(1  ,   bp

d nn )1(2  .                                        (22) 

 Since 10  p , 0bn , from (22) it follows  

                                                                           dd nn 12  .                                                                (23) 

 Let the strength conditions (17) be satisfied for the factor bn , i.e. let 

                                                               bp
p nn )1(1  ,  

p
bp nn 2)1(  .  

Then for the factors dn1 , dn2  taking into account (23) there are the following inequalities  

                                                                     pddp nnnn 2211  .                                                     (24) 

 Comparing (20), (22) taking into account (19), there are the following inequalities  

                                                                     rd nn 11  ,   dr nn 22  .  

It follows from here that taking into account that according to (19) rr nn 21  , we get 

                                                                     drrd nnnn 2211  .                                                      (25) 

 Then by reason of (24), (25) there are the following inequalities 

                                                                           prrp nnnn 2211  .                                                (26) 

 From (26) taking into account (21) the fulfillment of the specified strength conditions (14) for 

the safety factor 0
bn  follows. The constraints on the parameter p  are found from the assumption of 

the existence of strength conditions (17), i. e. let 

                                                                         
p

p

p

p nn

 


 11

21 .                                                      (27) 

whence it follows  

                                                                       
pppp

nn

n
C

21 


 .                                                  (28) 

 Note that as 112  pp nn , then from (28) it follows 10  pC . If pp C , then the range for 

varying the values of the factor bn  equals to zero, i.e., in this case 2/)( 21
pp

b nnn   what is diffi-

cult to perform in practice at the given 
pn1 , 

pn2 . Thus, at pp C  it is possible to perform the given 

strength conditions (14) for the factor 0
bn  with the application of the adjusted strength conditions 

(17) and the approximate solution that generates for the stress b  such an error   that p  || . 

The theorem 2 is proved. 

 Corrected equivalent strength conditions taking into account the error of stresses. In prac-

tice, to solve the problems of the theory of elasticity formulated for three-dimensional composite 

structures, numerical methods are used, for example, FEM [10–12], which generate solutions with a 
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small error. In this regard, it becomes necessary to take into account the error of solutions in equiva-

lent strength conditions. In [16], equivalent strength conditions are considered without taking into 

account the error of approximate solutions. Using the results of [4], and based on Theorems 1 and 2, 

we formulate the adjusted equivalent strength conditions that take into account the error of the solu-

tions. The adjusted equivalent strength conditions are reflected in the following theorem, which us-

es the notation introduced in Theorems 1, 2. 

 Theorem 3. Let the equivalent strength conditions of the form be determined for the safety fac-

tor of an elastic isotropic homogeneous structure bV  

                                                                          p
b

p nnn 2
0

1  ,                                                         (29) 

where pn1 , pn2  are given (i. e. the parameter p  is defined, see the theorem 1); 0
bn  – the safety factor 

of the structure bV  corresponding to the exact solution to three-dimensional elasticity problem (for-

mulated for the structure bV ). Let for the structure bV  the maximum equivalent stress b (corre-

sponding to the approximate solution to the elasticity problem) be defined. Let  

                                                                
pppp

nn

n
C

21

 ||



 ,                                                (30) 

where || 12
pp nnn  ,   – relative error for the stress b , i. e. 00 /)( bbb   ,                                                                   

where 0
b  – maximum equivalent stress of the structure bV  corresponding to the  exact solution to 

the elasticity problem, p  – the estimate for the error  . 

 Let the safety factor bn  of the structure corresponding to the approximate solution satisfy the 

adjusted equivalent strength conditions of the form 

                                                                    
p

p

b

p

p n
n

n

 


 11

21 .                                                    (31) 

where bTbn  / ,  T  – yield stress. 

 Then, the safety factor 0
bn  of the structure corresponding to the exact solution satisfies the 

equivalent strength conditions (29), where 00 / bTbn  . 

The proof of the Theorem 3 is similar to the proof of the Theorem 2. Note that p  can be consid-

ered as the maximum error for the maximum equivalent structural stress. The relations (31) can be 

represented as 

                                                         )1()1( 2211   p
b

p nnn , 

or taking into account (13) we have 

                                                       )1()1( 2211   pnnpn b ,                                                 (32) 

where the values 1 , 2  are defined with the help of the error p  of the stress b  according to the 

formulae 

                                            1
1

1
1 




p
 ,   

p





1

1
12 ,    10  p ,                                   (33) 

p  – equivalence coefficient. 

 The fundamental principles of the method of equivalent strength conditions. Let us consid-

er a cantilever composite beam 0V  having a regular structure (which is located in the Cartesian co-

ordinate system Oxyz ) with the length 6001536  hL , square section that has dimensions 

HH  , where 50128  hH , fig. 1. The beam 0V  consists of plastic materials and has static load-

ing ),,( zyxqz . 
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Fig. 1. The characteristic sizes of the beam 0V  

Рис. 1. Характерные размеры балки 0V  

 
 

 The regular cell 0G  of a composite beam 0V  has the dimensions hhh 888   in which longitu-

dinal fibers with the cross section hh  are located, fig. 2, the cross sections of the fibers are shad-

ed, 16 fibers. Thus, the beam is reinforced with longitudinal fibers – the section hh , the distance 

between the fibers is h . The fibers are isotropic homogeneous bodies and have the same elastic 

moduli. 
  

                                              
                                                          

Fig. 2. Regular cell 0G  

Рис. 2. Регулярная ячейка 0G  
 

 It is believed [17], if the fiber thickness is less than 0.5 mm, then such fibers form a micro-

inhomogeneous structure. Let мм 600L , мм 50H , then, 3906,0h  mm, i. e., the beam 0V  

with the dimensions см 5см 60см 5  has a microinhomogeneous regular fibrous structure. 

 For the safety factor 0n  of the composite beam 0V , the conditions of strength of the form (5) are 

specified. It is required to determine the safety factor 0n  of the given beam, i.e., check whether the 

beam satisfies the specified strength conditions. To solve this problem, we use the method of equiv-

alent strength conditions, the fundamental principles of which will be considered (for simplicity, 

without losing the commonality of views) using an example of the beam 0V  with a microinhomo-

geneous regular structure. The basic regular partition 0R  of the beam 0V  consists of (basic) single-

grid FE (1gFE) 
h
jV  of the 1st order cube shapes with the side h  [8] in which three-dimensional 

strain-stress state is realized. The partition 0R  takes into account the microinhomogeneous struc-

ture of the beam, generates a uniform fine (base) grid  with the step h  of the dimension 

1291537129   and a discrete model with a total number of unknown nodal FEMs 

766817280 N , the width of the ribbon of FEM system of equations (CS) equals 503160 b . The 

implementation of FEM for the base model 0R (more than 76 million nodal variables) requires 

large computer resources. The construction of a sequence of solutions is associated with the appli-



 11 

cation of the grinding procedure for the basic partition, which is complex and difficult to implement 

for the composite structure of the beam 0V , since each grinding step leads to a sharp increase in the 

dimension of the discrete problem. Note that the step of the basic regular splitting 0R  of the com-

posite beam 0V  cannot be larger than h , since the fiber cross section has the dimensions hh . 

 According to MESC, we introduce an isotropic homogeneous beam bV  such that the beams 
bV , 0V  have the same shape, dimensions, specified fastening and loading, but differ in elastic mod-

uli. The elastic moduli of the beam bV  are equal to the elastic moduli of the fiber of the beam 0V . 

The implementation of MESC reduces to constructing the adjusted equivalent strength conditions 

(32) and to determining safety factor bn  of the body bV , i. e., to determining the equivalence coef-

ficient p  for the beam 0V  and to determining the maximum equivalent stress b  for the body bV  

using FEM with the error p . The coefficient p  is determined by the formula bp  /0 , where 

0 , b  are the maximum equivalent stresses of the bodies 0V , bV , respectively. Note that finding 

the stress 0  by FEM (using single-grid FE cube shapes with side h  [8]) for the beam 0V , taking 

into account its microinhomogeneous structure, requires large computer resources. 

 The following procedure is proposed to find the equivalence coefficient p  and stress b . For 

the isotropic homogeneous body bV , we construct a sequence of basic regular partitions (discrete 

models) N
nnV 1

0}{   consisting of basic 1gFE 
)(n

jV  of the first order of the shape of a cube with the side 

nh . The discrete model 0
nV  has a dimension )(

3
)(

2
)(

1
nnn nnn  , where 

                                         18)(
1  nn n , 196)(

2  nn n , 18)(
3  nn n ,  Nn ,...,1 .                        (34) 

 The base grid steps on the axis Ox , Oy , Oz  are )8/()( nHh n
x  , )96/()( nLh n

y  , 

)8/()( nHh n
z  , as HL 12 , то 

)()()( n
z

n
y

n
xn hhhh   and hhn  , 1,...,1  Nn . It should be noted 

that at Nn   we get hhN   (for the law of splitting (34) at 16N  we have hh 16 ), i. e.  at 

16n  of the dimensions of an isotropic homogeneous discrete model 0
16V  and basic partition 0R  

of the composite beam 0V  are equal. It is important to note the following. The grinding law for par-

titions is specified so that each partition  0
nV consists of a finite number of areas b

nG  of the same 

shape and size that the area b
nG  and the area of the regular cell  (Fig. 2) have the same shape, but 

differ in characteristic sizes. For a given grinding law (34), the area b
nG  has dimensions 

nnn hhh 888  . The area b
nG  differs from the area of the regular cell 0G  (in dimensions 

hhh 888  , Fig. 2) by the characteristic dimensions of the form hh nn  , where 1n . At 

16n  we have 1n , at 16n   we get 116   

 We introduce the area 0
nG  whose shape and characteristic dimensions coincide with the area 

b
nG , Nn ,...,1 . In this case, the area 0

nG  has a composite structure, which apparently coincides 

with the structure of a regular cell 0G , i.e., the area 0
nG  has the same number of fibers (with a 

square section in size nn hh  ) and the same mutual arrangement as in the cell 0G  (16 longitudinal 

fibers, fig. . 2). The fibers in the areas 0
nG , 0G  have the same moduli of elasticity. The areas 0

nG , 

0G , in fact, differ only in scale, that is, it can be formally written 0
0 GG nn  , where n  is the scale 

factor, 1n , 1,...,1  Nn .  At Nn   we get 1N , i. e. 0
0 GGN  .  For the grinding law (34), 
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at 16n  we have 116  , i.e. 0
0
16 GG  . Note that the inhomogeneous (fibrous) structure is taken 

into account in the area 0
nG . 

 In the discrete model 0
nV , we replace all homogeneous isotropic areas b

nG  with the composite 

areas 0
nG . As a result, on the basis of an isotropic homogeneous model 0

nV , we get a composite 

(base) discrete model, which we denote by 0
nR  (in which the inhomogeneous structure is taken into 

account). Thus,  at 16n  the composite discrete model 0
16R  coincides with the basic model 0R  of 

a composite beam 0V , i.e., we have 0
0
16 RR . The discrete models 0

nV , 0
nR   have the same shape, 

characteristic dimensions, the same fastening and loading, but differ in elasticity moduli. According 

to (34), the dimensions of the models  0
nV , 0

nR  increase sharply with increasing n . To lower the 

dimension of discrete models, multigrid finite elements are effectively applied [10, 11, 13, 14]. Us-

ing m - grid FEs in discrete basic models 0
nV , 0

nR  we get m – grid discrete models b
nV , nR  respec-

tively, which have the same shape, characteristic dimensions, the same fastening and loading like 

the beam 0V , but they differ in elasticity moduli of the basic models 0
nV , 0

nR . The procedure for de-

termining the equivalence coefficient  is as follows. For the discrete models b
nV , nR , we determine 

respectively the maximum equivalent stresses  b
n , n , with the help of which we find the coeffi-

cient b
nnnp  / , Nn ,...,1 . We have ppn   at Nn . Let nnnn ppp /|| 1  be a small 

value, then we have npp  . Let the sequence of solutions 12
1}{ n

b
n  be constructed that quickly con-

verges to an exact solution and let b
n

b
n

b
nn   /|| 1  be a small value. Then we consider that b

n  

is a maximum equivalent stress of an isotropic homogeneous body bV  (found with the error p ). 

Plugging the obtained p , p  and the given factors 1n , 2n  in (32), we determine the adjusted equiv-

alent strength conditions for the composite beam 0V . The safety factor bn  for the body bV  is de-

termined by the formula b
nTbn  / , where T  is the yield strength of the fiber. If the found factor 

bn  satisfies the obtained adjusted equivalent strength conditions of the form (32), then the safety 

factor 0n  of the composite beam 0V  (fig. 1) satisfies the specified strength conditions of the form 

(5).      

 The results of numerical experiments. Let us consider the model problem of calculating the 

strength of a cantilever beam 0V  with a microinhomogeneous fibrous regular structure with the di-

mensions hhh 1281536128  , h  - little, given, Fig. 1. The beam 0V  consists of plastic materials, 

has a square section with the dimensions HH  , where hH 128 . The regular cell of the mi-

croinhomogeneous beam structure 0V  with the hhh 888   has 16 identical longitudinal fibers with 

a cross section hh , Fig. 2, i. e. the beam is reinforced with isotropic homogeneous longitudinal 

fibers - section hh , the distance between the fibers is h . At 0y : 0 wvu , i.e. in the plane 

xOz , the beam 0V  is fastened. For the safety factor 0n  of the beam 0V  the strength conditions of 

the form are given 

                                                                   2,33,1 0  n .                                                               (35) 

 For the beam 0V  we use the following basic data:  

                              3906,0h ; 5T ; 10vE , 1cE , 3,0 vc  ,  ,0018,0zq                 (36) 

where cE , vE  ( c , v ) - Young's modulus (Poisson's ratio) of a binding material and fibers, re-

spectively, T  - fiber yield strength, loading zq  acts on the surface Hz  , LyL 5,0 , fig. 1.  
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 To calculate the beam 0V we use the equivalent strength method using multigrid finite elements. 

In the calculations, we use homogeneous and composite Lagrangian three-grid FEs (3gFE) having 

the shape of a rectangular parallelepiped. We will consider the fundamental principles for construct-

ing 3gFE using the example of a composite 3sFE )3(
V  having the shape of a rectangular parallele-

piped with the dimensions hhh 8168   [10, 15]. 3gFE )3(
V is located in the local Cartesian coor-

dinate system Oxyz , which contains two regular cells 0G  with the dimensions hhh 888   of the 

composite beam  0V . First, we consider the procedure for constructing a composite Lagrangian two-

grid FE (2sFE) )2(
dV  with the dimensions hhh 888   that contains one regular cell 0G . In the pro-

cedure we use a uniform fine mesh dh  with the step h  and the dimensions 999   the course 

mesh dH  nested in the fine mesh, dd hH  . Fig. 3 shows a fine mesh dh  and a course mesh dH  

having 125 nodes, which are marked with dots. The fine mesh dh  is generated by the basic dR  

2gFE )2(
dV , which consists of 1gFE h

jV  of the 1st order cube shape with the side h  (in which three-

dimensional strain-stress state is realized, Mj ,...,1 , M is the total number of 1gFE, 512M ) 

and which takes into account the microinhomogeneous structure of 2 gFE )2(
dV . The fibers are par-

allel to the axis Oy , the cross sections of the fibers in the plane are shaded, 16 fibers, Fig. 3. 
 

                                                                
                                                

Fig. 3. Small and large mesh 2gFE )2(
dV  

Рис. 3. Мелкая и крупная сетки 2сКЭ )2(
dV  

 

 The full potential energy dP  of the base partition dR  2gFE )2(
dV  is presented [5; 8] 

                                                         )][
2

1
(

512

1





j

j
T
jj

h
j

T
jd KП Pqqq ,                                              (37) 

where ][ h
jK  – stiffness matrix, jP , jq – the vectors of nodal forces and displacements of 1gFE 

h
jV  

of the base partition 2gFE, T – transposition. 

 Using Lagrange polynomials [5] on the large mesh dH  we define approximating displacement 

functions  222 ,, wvu  for 2gFE )2(
dV , which are written in the form  

                     
  


5

1

5

1

5

1

2

i j k

ijkijkuNu ,   
  


5

1

5

1

5

1

2

i j k

ijkijkvNv ,   
  


5

1

5

1

5

1

2

i j k

ijkijk wNw ,                  (38) 

where ijkijkijk wvu ,,  – displacement values u, v, w in the node kji ,,  of the mesh dH ; kji ,,  – coor-

dinates of an integer coordinate system ijk , introduced for the mesh nodes dH  (fig. 3); 

),,( zyxNN ijkijk   – base function of the node kji ,,  of the mesh dH ,  5,...,1,, kji , 

)()()( zLyLxLN kjiijk  , where 
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                  
 




5

,1

)(
i i

i
xx

xx
xL

 

 ,  
 




5

,1

)(
j j

j
yy

yy
yL

 

 ,  
 




5

,1

)(
k k

k
zz

zz
zL

 

 ,                  (39) 

kji zyx ,,  – coordinates of the node kji ,,  of the mesh dH  in the coordination systemт Oxyz , fig. 3. 

 Let us denote: ijkNN  , ijkuu  , ijkvv  , , ijkww  where 5,...,1,, kji , 125,...,1 . 

Then the equations (38) take the form 

                                            



125

1

2



uNu ,  



125

1

2



vNv ,  



125

1

2



wNw .                                         (40) 

 We denote by T
d wwvvuu }...,,,...,,,...,,{ 125112511251q  nodal displacement vector of the mesh 

dH , i. e. nodal unknown vector 2gFE )2(
dV . Using (40), the components of the vector jq  of the 

nodal variables 1gFE h
jV  are expressed in terms of the components of the vector dq , as a result we 

get the equation 

                                                                   djj A qq  ][ 2 ,                                                               (41) 

where  ][ 2
jA  – rectangular matrix, 512,...,1j .  

        Substituting (41) into equation (37), from the condition 0/  ddП q  we get dddK Fq  ][ , 

where  

                                         



512

1

22 ]][[][][
j

j
h
j

T
jd AKAK ,    




512

1

2 ][
j

j
T

jd A PF ,                                    (42) 

where ][ dK  – stiffness matrix (the dimension – 375375 ), dF  – nodal force vector (the dimension 

– 375) 2gFE )2(
dV . 

   Let us consider the construction of the Lagrangian three-grid FE (3gFE) )3(
V , using two 2gFE 

)2(
dV . The small mesh  h  and the large one H  of 3gFE )3(

V  are shown in fig. 4, the nodes of the 

mesh H  are marked with dots, 12 nodes. The nodes of the small mesh h  are the nodes of the 

large meshes dH  of two 2gFE )2(
dV , 2 ,1d .  

                                                      

Fig. 4. Small h and large H mesh 3gFE )3(
V  

Рис. 4. Мелкая h  и крупная H  сетки 3сКЭ )3(
V  

 
 

 The full potential energy P  3gFE )3(
V  can be presented in the form 

                                                       )][
2

1
(

2

1





d

d

T

ddd

T

d KP Fqqq ,                                                 (43) 

where ddK F  ,][ , dq  – stiffness matrix, vectors of nodal forces and displacements 2gFE 

)2(
dV , 2 ,1d . 
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 Using Lagrange polynomials on the large mesh H  we determine the approximating functions 

of displacements  333 ,, wvu  for 3gFE )3(
V , that are written in the form  

                     
  


2

1

3

1

2

1

3

i j k

ijkijkuNu ,   
  


2

1

3

1

2

1

3

i j k

ijkijkvNv ,   
  


2

1

3

1

2

1

3

i j k

ijkijk wNw ,                   (44) 

where ijkijkijk wvu ,,  – displacement values of u, v, w in the node kji ,,  of the mesh H ; kji ,,  – 

coordinates of an integer coordinate system ijk , introduced for the mesh H  (fig. 4); 

),,( zyxNN ijkijk   – base function of the node kji ,,  of the mesh H ,  2,1, ki , 3,2,1j , 

)()()( zLyLxLN kjiijk  , where 

                  
 




2

,1

)(
i i

i
xx

xx
xL

 

 ,  
 




3

,1

)(
j j

j
yy

yy
yL

 

 ,  
 




2

,1

)(
k k

k
zz

zz
zL

 

 ,                  (45) 

kji zyx ,,  – node coordinates kji ,,  of the mesh H  in the coordinate system Oxyz , fig. 4. 

 let us denote ijkNN  , ijkuu  , ijkvv  , , ijkww   where 2 ,1, ki , 3 ,2 ,1j , 

12,...,1 . Then the equations (44) take the form 

                                            



12

1

3



uNu ,   



12

1

3



vNv ,   



12

1

3



wNw .                                       (46) 

 We denote by Twwvvuu }...,,,...,,,...,,{ 121121121q  the vector of nodal displacements of the 

large mesh H , i.e., the vector of nodal variables 3gFE )3(
V . Using (46), the vector components 

dq  of nodal variables 2gFE )2(
dV  are expressed  by the vector components q , as a result we get  

                                                                    qq  ][ 3
dd A ,                                                               (47) 

where  ][ 3
dA  – rectangular matrix, 2 ,1d . 

 Substituting (47) into the expression (43), from the condition 0/   qP  we get 

 Fq  ][K , where  

                                          



2

1

33 ]][[][][
d

dd
T

d AKAK ,  



2

1

3 ][
d

d
T

dA FF ,                                     (48) 

where ][ K  – stiffness matrix (the dimension- 3636 ), F  - nodal force vector (the dimension – 

36) 3gFE )3(
V . 

 Comment 2. The solution built for the large mesh H  3gFE )3(
V , using the formula (47) is pro-

jected onto the small mesh h  3gFE )3(
V . Then, using the formula (41), we determine the nodal 

displacements of the basic partitions 2gFE )2(
dV , which makes it possible to calculate stresses in any 

1gFE 
h
jV  of base partition dR  2gFE )2(

dV , 2 ,1d . 

 Comment 3. By virtue of (41), the dimension of the vector dq  (i.e. the dimension of 2gFE 

)2(
dV ) does not depend on the total number M  of 1gFE 

h
jV , i.e. on the dimension of the partition 

dR . Therefore, to take into account the microinhomogeneous structure in 2gFE, one can use arbi-

trarily small basic partitions consisting of 1gFE 
h
jV . In this case in 2gFE )2(

dV  (consequently, in 

3gFE )3(
V ) the three-dimensional strain-stress state is described arbitrarily accurately (without in-

troducing additional simplifying hypotheses). 

 Using the procedures described in [14], 2gFE are designed to calculate composite shells of 

revolution, rings of complex shape and shafts that have central circular holes, composite and uni-

form cylindrical shells, plates and beams of complex shape, which are widely used in practice. The 
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procedure for constructing homogeneous multigrid finite elements is similar to the procedure for 

constructing composite multigrid finite elements. 

 For the composite beam 0V  we define an isotropic homogeneous body bV  (the beam bV ). The 

bodies 0V , bV  have the same shape, size, fastening and loading, the elastic moduli of the body bV  

are equal to the elastic moduli of the fiber. Using the law of splitting (34), we construct, according 

to the procedure described above, three-mesh discrete models b
nV , nR , consisting respectively of 

isotropic homogeneous and composite 3gFE of the type )3(
V  with the dimensions nnn hhh 8168  , 

12 ,1n . For the discrete isotropic homogeneous model b
nV  we find the solutions b

nw , b
n , where 

b
nw , b

n  - maximum displacement and equivalent voltage of the discrete model b
nV , 12,...,1n . 

Equivalent stresses are determined by the 4th theory of strength. The calculation results are present-

ed in Table 1. The analysis of the calculation results shows a fast uniformly monotonic convergence 

of approximate solutions ( b
nw , b

n ) to the exact solution. The stresses 665,011 
b , 686,012 

b , dif-

fer by %061,3 . The test calculations show that in this case the stress b
12  is found with the  er-

ror %15%10  . Let 15,0p . The condition (30) for p is satisfied. Taking into account relations 

(13) and (35) in (30), we have 42,015,0  pp C . According to (33) at 15,0p  we get 

176,01  , 131,02  . The adjusted equivalent strength conditions (32) for 176,01  , 131,02   

have the form  

                                                                21 869,0176,1 pnnpn b  ,                                               (49) 

where bn  - safety factor of the body bV , determined by FEM. 
 

                                                                                                          Таблица 1  

 

The results of calculations of the beam 
bV  

Результаты расчетов балки 
bV  

 

b
nV  b

nw  
b
n  b

nV  b
nw  b

n  

bV1  204,851 0,377 
bV7  

238,033 0,569 

bV2  228,503 0,489 
bV8  

238,263 0,595 

bV3  234,023 0,524 bV9  
238,422 0,620 

bV4  236,109 0,537 
bV10  

238,545 0,643 

bV5  237,119 0,543 bV11 
238,630 0,665 

bV6  
237,683 0,547 bV12  

238,697 0,686 

 

 Note that the three-grid discrete model 
bV12 , consisting of Lagrangian 3gFE of the type )3(

V  

( 32768,...,1 ) with the dimension 121212 8168 hhh  , has 7300812 
bN  of nodal variables of 

FEM, the width of the tape the control system of FEM is 105912 b . The implementation of FEM 

for the discrete model 
bV12  requires 566,49903

105973008

5031676681728

1212

00 










bN

bN
k

b
 times less com-

puter memory than for the base model 0R  of the beam 0V , which shows the high efficiency of the 

application of Lagrangian 3gFE of the type )3(
V in the calculations. The equivalence coefficient p  

for the composite beam 0V  is determined using the procedure described above. The discrete models 
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b
nV , nR , 12 11, ,9n  are constructed using 3gFE of the type )3(

V  based on basic regular partitions, 

respectively, with the dimensions: 7386573  , 89105789   и 97115397  . The equivalence 

coefficients np  are found by the formula b
nnnp  / , where n , b

n  – maximum equivalent 

stresses of the models nR , b
nV , 12 11, ,9n  respectively. As a result of the calculations, we get: 

002,39 p , 000,311 p , 999,212 p . The relative errors for the found coefficients 9p , 11p , 12p  

are 

                      %066,0000,3/|000,3002,3|%100/||%100(%) 119111  ppp ,  

                      %033,0999,2/|999,2000,3|%100/||%100(%) 1211222  ppp .  

 As 12119 ppp   and 2  is the smallest value, then we assume that the equivalence coefficient 

is 999,212  pp . Plugging into (49) 999,2p , 3,11 n , 2,32 n , we get 

                                                                339,8584,4  bn .                                                          (50) 

 The safety factor of the homogeneous body bV  is 288,7686,0/5/ 12  b
Tbn  , which satis-

fies the adjusted equivalent strength conditions (50). This means that the safety factor 0n  of the 

composite beam 0V  satisfies the specified strength conditions (35). 

 Let us perform verification calculations. Based on the underlying partition 0R  of the beam 0V  

using 3gFE )3(
V  we build three-grid discrete models: composite 16R  and isotropic homogeneous  

bR16  corresponding to the law of splitting (34) at 16n . We consider that the stresses 279,216  , 

762,016 
b  correspond to exact solutions, i.e. 160   , b

b 16  . Then the safety factor for the 

composite body 0V  is 194,2279,2/5/ 00  Tn , i.e. 194,20 n  satisfies given strength condi-

tions (35), which confirms a similar conclusion obtained using MESC.  

 The equivalence coefficient 0p  (corresponding to the exact solutions) for the beam 0V  is 

990,2762,0/279,2/00  bp  . It should be noted that the coefficients 999,2p  and 

990,20 p  differ by 0,301 %, i.e. as a matter of fact, you can take pp 0 . 

 The dimension of the base discrete model 0
12V  (whose mesh at 12n  has the dimension 

97115397  , see formulae (34)) equals 32517504, the width of the tape of the control system of 

FEM is 28524. The number of nodal variables of FEM  of the three-grid discrete model bV12  equals 

73008, the width of the tape of the control system of FEM is 1059. The implementation of FEM for 

a homogeneous isotropic three-grid discrete model 
bV12  requires 

685,11996
105973008

2852432517504
2 




k  times less computer memory than for the base model 0

12V , 

consisting of the known 1gFE of the cube shape with the side 12h . 

Conclusion. The method of equivalent strength conditions is proposed for calculating the static 

strength of structures (plates, beams, shells) with an inhomogeneous, microinhomogeneous regular 

structure under specified strength conditions. The implementation of the method is reduced to cal-

culating the strength of isotropic homogeneous bodies with the use of equivalent strength conditions 

built on the basis of given ones. When calculating homogeneous bodies according to FEM, multi-

grid finite elements are used, which generate discrete models of small dimension and solutions with 

a small error. The implementation of the proposed method requires small computer resources. 
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