UDK 629.12.03 (075.8)
INCREASE OF THE PURITY OF METAL PRODUCTS SURFACES WITH APPLICATION OF NANOTECHNOLOGIES
G. G. Krushenko
Institute of Computational Modeling SB RAS; 50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
It is known that the quality of the surface of metal products machinery and equipment measured at the value of the roughness significantly affects their performance. This also applies to the impellers turbopump units (TNA) of liquid rocket engines (LRE), the cast of superalloys, because this figure significantly affects the volumetric flow of the fuel components. However, due to the difficulties of conducting full-scale experiment on LRE, in that article the data from the cast steel ship propellers (SP) were used. There is a certain similarity between geometries of SP and functions of TNA. The similarity of the features and technologies of their production, both of which, firstly, produce a casting: impellers TNA – investment casting process, SP – casting in sand-clay molds, secondly, there is the similarity in the materials of the molds – in both cases, their basis is the sand, and the second component is a liquid binder. At the same time when molding in sand-clay parts often affects the penetration, firmly linked with the body of the casting crust, formed as a result of penetration of liquid metal into the pores between the grains of sand form, which is subsequently removed in a variety of ways, usually with the deterioration of surface cleanliness. To reduce metal penetration work surfaces forms are coated with fireproof paint, representing a suspension of the powder filler (graphite, powdered quartz, etc.). However, the use of such paints does not prevent the formation in castings of metal penetration due to the particle size of the fillers. In this paper a nonstick paint containing nanopowders of refractory chemical compounds is used, the use of such coatings is almost completely prevents the formation of burnt-on steel castings, including the one described in the work of the ship propeller, and, as a result, increased clarity and improved surface quality. The obtained results can be used in the manufacture of molds for the casting of the impellers TNA.
Keywords: turbopomp assembly, work wheels, surface roughness, nanopowders.
References

1. Ivanov A. V., Moskvicev A. V. Influence of Geometry on Vortex Configuration and Dimension in LRE Turbopump Labyrinth Seal. Procedia Engineering, 2015, Vol. 106, P. 126–131.

2. Krushenko G. G. [Improving the quality of parts rocket engine turbopump assembly LRE]. Remont, vosstanovlenie, modernizatsiya, 2014, No. 10, P. 16–21 (In Russ.).

3. Antonenko S. V. Sudovye dvizhiteli. [Marine propulsion]. Vladivostok, DVGTU Publ., 2007, 126 p.

4. Degu Y. M., Sridhar K. Marine propeller manufacturing – a new approach. American journal of engineering research, 2014, Vol. 3, Iss. 5, P. 207–211.

5. Ezanno A., Doudard C., Moyne S. et al. Validation of a high-cycle fatigue model via calculation/test comparisons at structural scale: Application to copper alloy sand-cast-ship-propellers. International Journal of Fatigue, May 2015, Vol. 74, P. 38–45.

6. Mosaad M. A. Marine propeller roughness penalties. University of Newcastle upon Tyne, UK. Ph. D. Thesis. 1986, 40 p.

7. Lysenkov P. M., Mikhaylov V. S., Tevelev L. G. [The influence of surface topography of screw propellers on their hydrodynamic characteristics]. Sudostroenie, 1987, No. 2, P. 39–41 (In Russ.).

8. Grigson C. W. B. Propeller roughness, its nature and its effect upon the drag coefficients of blades and ship power. Trans. R.I.N.A. 1982, Vol. 124, P. 227–242.

9. Chen H., Cardone V., Lacey P. Use of operation support information technology to increase ship safety and efficiency. SNAME Transacfions, 1998, Vol. 106, P. 105–127.

10. Korkut E., Atlar M. An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers. Ocean Engineering, 2012, Vol. 41, P. 1–12.

11. Georgievskaya E. P. Kavitatsionnaya eroziya grebnykh vintov i metody bor’by s ney. [Cavitation erosion of propellers and methods of combating it]. Leningrad, Sudostroenie Publ., 1978, 208 p.

12. Shchelkanov A. F. [The surface condition of the metal and the nature of the initial damage during cavitation]. Energomashinostroenie, 1972, No. 1, P. 25–27 (In Russ.).

13. T. van Terwisga, E. van Wijngaarden, Bosschers J., Kuiper G. Achievements and challenges in cavitation research on ship propellers. International Shipbuilding Progress, 2007, Vol. 54, No. 2–3, P. 1–22.

14. Shvetsov V. I., Ivanov M. A., Kulakov B. A. i dr. [The processes of formation and prevention of burnt-on steel castings]. Vestnik YuUrGU. Seriya: Metallurgiya, 2015, No. 1, P. 17–23 (In Russ.).

15. Foseco Ferrous Foundryman’s Handbook. 11-th ed. Edited by Brown J. R. Oxford: Butterworth- Heinemann Linacre House, Jordan Hill. Chapter 16. Coatings for moulds and cores. 2000, P. 226–244.

16. Ivanov V. N. Slovar’-spravochnik po liteynomu proizvodstvu. [The dictionary of foundry]. Moscow, Mashinostroenie Publ., 2000, 384 p.

17. Krushenko G. G., Zhukov M. F., Mikhalev P. A. et al. Protivoprigarnaya kraska dlya liteynykh form i sterzhney. [Nonstick paint for foundry molds and cores]. Patent USSR, No. 980922, 1982.

18. Uskov I. V., Krushenko G. G., Pinkin V. F. et al. Protivoprigarnaya kraska dlya liteynykh form i sterzhney. [Nonstick paint for foundry molds and cores]. Patent RF, No. 2048952, 1995.

19. Krushenko G. G. [Foundry nanocoating]. Nanotekhnika, 2012, No. 2, P. 93–97 (In Russ.).

20. Tananaev I. V., Fedorov V. B., Malyukova L. V. et al. [The characteristic features of ultrafine environments]. DAN SSSR, 1985, Vol. 283, No. 6, P. 1364–1367 (In Russ.).

21. Gulyaev B. B., Kornyushkin O. A., Kuzin A. V. Formovochnye protsessy. [Forming processes]. Leningrad, Mashinostroenie Publ, 1987, 264 p.

22. Vetiska A., Bradic J., Macashek I. et al. Teoreticke zaklady slevarenske technologie. Vydání, 2., upravené vyd. Praha: NTL. 1976. 320 p.

23. Brown R. A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants, etc. Philosophical Magazine, 1828, Vol. 4, P. 161–173.

24. Einstein A. Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Fluessigkeiten suspendierten Teilchen. Annalen der Physik. May 1905, Bd. 17, P. 549–560.


Krushenko Genry Gavrilovich – Dr. Sc., professor, Chief research officer, Institute of Computational Modeling, SB RAS. E-mail: genry@icm.krasn.ru.