UDK 621.396
SINGLE-FREQUENCY METHOD SIMULATION FOR DETERMINation of VERTICAL IONOSPHERIC SIGNAL DELAY
A. S. Kurnosov*, Y. L. Fateev
Siberian Federal University, Institute of Engineering Physics and Radioelectronics 28, Kirenskogo Str., Krasnoyarsk, 660074, Russian Federation *E-mail: kurnosov89@gmail.com
The actual problem of recent global navigation satellite systems is increasing of positioning accuracy. This problem has several solutions. The first one is decreasing of pseudorange measurements error. The significant contribution in the budget of the pseudorange error is signal delay in the ionosphere. The contribution of the ionospheric error could be 60 percent of this budget. Therefore, the ionospheric error exception will have resulted in significant increasing of positioning accuracy. The research subject is a single-frequency method of determining the vertical signal delay in the ionosphere. The purpose of work is verification the method on model data. Single-frequency method verification was performed using simulation modeling. The article considers existing approaches for determining signal delay in the ionosphere. The dual-frequency method contains the systematic error due to satellite and receiver hardware delays. Dual-frequency phase method usage requires phase ambiguity resolution. Standard single-frequency method uses direct measurements of code and phase pseudorange, and respectively has limited precision as well as dual-frequency methods described above. The solution of this problem is usage of measurement first differences instead of direct measurements. This approach is realized in the one-frequency method based on code and phase measurement first differences. The article gives a detailed description of this method and the results of the simulation. Simulation results has confirmed efficiently of this method and allows starting experimental researches.
ionosphere, one-frequency method, dual-frequency method, ionospheric delay, measurement filtration.
References
  1. Afraymovich E. L., Perevalova N. P. GPS-monitoring verkhney atmosfery Zemli [GPS - monitoring of the Earth's upper atmosphere]. Irkutsk, GU NTs RVKh VSNTs SO RAMN Publ., 2006. 480 p.
  2. Vereshchagin A. I., Fateev Yu. L., [Investigation of stationary navigation receiver multipath compensation]. Uspekhi sovremennoy radioelektroniki. Moscow, Radiotekhnika Publ., 2012, no. 9, p. 43–45 (In Russ.).
  3. Antonovich K. M. Ispol'zovanie sputnikovykh radionavigatsionnykh sistem v geodezii. [Satellite navigation systems in geodesian application]. Moscow, FGUP “Kartgeotsentr” Publ., 2005, 334 p.
  4. Kharisov V. N., Perov A. I., Boldin V. A., GLONASS. Printsipy postroeniya i funktsionirovaniya. [GLONASS. Construction principles and operation]. Moscow, Radiotekhnika Publ., 2010, 800 p.
  5. Schaer S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System. Ph.D.dissertation. ISBN: 9783908440017. Switzerland. Publ., 1999, 205 p.
  6. Dymovich N. D. Ionosfera i ee issledovanie [Ionosphere and its investigation.]. Moscow, Energiya Publ., 1964, 40 p.
  7. Memarzadeh Y. Ionospheric modeling for precise GNSS applications. Ph.D. dissertation Delft University of Technology, 2009, 242 p.
  8. Vereshchagin A. I., Fateev Yu. L., Novikov V. B., Golenok A. I., Tyapkin V. N., Shtro P. I. Sposob opredeleniya pogreshnosti formirovaniya psevdodal'nosti navigatsionnogo signala [The error estimation method of the formation of navigation signal pseudorange]. Patent RF, no. 2498225, 2013.
  9. Grebennikov A. V. Issledovanie metodov i razrabotka apparatury priema i obrabotki signalov sputnikovykh radiotekhnicheskikh sistem. Diss. Kand. Tekhn. nauk [Methods research and satellite radioelectronic system signals reception and processing equipment development. Cand. of technical sciences diss.]. Krasnoyarsk, 2000, 97 p.
  10. Dem'yanov V. V. Korrektsiya global'noy modeli polnogo elektronnogo soderzhaniya po tekushchim izmereniyam ionosfernoy zaderzhki signalov sputnikovykh radionavigatsionnykh sistem. Diss. kand. tekhn. nauk [Global total electron content model correction according to current measurements of GNSS signal ionospheric delay. Cand. of techn. sciences diss.] Irkutsk, 2000, 136 p.
  11. Nisher P., Trethewey M. GPS Ionosphere Determination Using L1 Only. Proceedings of the 1996 National Technical Meeting of The Institute of Navigation, Santa Monica, CA, January 1996, p. 625–635.
  12. Akim E. L., Kapralov M. A., Stepan'yants V. A., Tuchin A. G., Tuchin D. A. Opredelenie parametrov dvizheniya kosmicheskogo apparata bortovoy navigatsionnoy sistemoy po izmereniyam psevdoskorosti i psevdodal'nosti sputnikovykh navigatsionnykh sistem [Space vehicle motion parameters definition by on-board navigation system over GNSS pseudovelocity and pseudorange measurements]. Preprint IPM im. M. V. Keldysha RAN N 20, Moscow, 2004.
  13. Kurnosov A. S., Fateev Y. L. Ionosphere parameters definition. 2013 International Siberian Conference on Control and Communications (SIBCON). Proceedings. Krasnoyarsk: Siberian Federal University. Russia, Krasnoyarsk, September 12−13, 2013. IEEE Catalog Number: CFP13794-CDR. ISBN: 978-1-4799-1060-1. DOI: 10.1109/SIBCON.2013.6693622.
  14. Suslov V. I., Ibragimov N. M., Talysheva L. P., Tsyplakov A. A. Ekonometriya. Uchebnoe posobie. [Econometrics. Textbook]. Novosibirsk, Izdatel'stvo SO RAN Publ., 2005, 744 p.
  15. Greshilov A. A., Stakun V. A., Stakun A. A. Matematicheskie metody postroeniya prognozov. [Mathematical methods for constructing forecasts]. Moscow. Radio i svyaz'. Publ., 1997, 112 p.

Kurnosov Anton Sergeevich – postgraduate student, Institute of Engineering Physics and Radioelectronics, Siberian Federal University. E-mail: kurnosov89@gmail.com

Fateev Yuri Leonidovich – Dr. Sc., professor of Military department, Military Engineering Institute, Siberian Federal University. E-mail: fateev_yury@inbox.ru